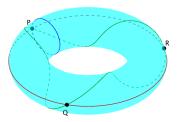
Roberto Pagaria ^{Università} di Bologna

Wonderful models for toric arrangements

Arrangements at Home: Combinatorial Aspects



May 2020

Talk is being recorded.

Covered topics:

Arrangements of subtori

Wonderful model

Cohomology

Divisorial case

Roberto Pagaria

Let $T \cong (\mathbb{C}^*)^n$ be an algebraic torus. A *layer* is a coset for a subtorus:

$$W_{\Gamma,\phi} := \{t \in T \mid \chi(t) = \phi(\chi) \quad \forall \chi \in \Gamma\}$$

for some $\Gamma < \text{Hom}(T, \mathbb{C}^*) = X^*(T) \cong \mathbb{Z}^n$ and $\phi \in \text{Hom}(\Gamma, \mathbb{C}^*)$. For $W = W_{\Gamma,\phi}$, define $\Gamma_W = \Gamma$. Let $T \cong (\mathbb{C}^*)^n$ be an algebraic torus. A *layer* is a coset for a subtorus:

$$W_{\Gamma,\phi} := \{t \in T \mid \chi(t) = \phi(\chi) \mid \forall \chi \in \Gamma\}$$

for some $\Gamma < \text{Hom}(T, \mathbb{C}^*) = X^*(T) \cong \mathbb{Z}^n$ and $\phi \in \text{Hom}(\Gamma, \mathbb{C}^*)$. For $W = W_{\Gamma,\phi}$, define $\Gamma_W = \Gamma$.

An arrangement of subtori \mathcal{A} is a finite collection of layers. We are interesting in computing the cohomology of the *complement* $M(\mathcal{A}) = T \setminus \bigcup \mathcal{A}$.

We call a *toric arrangement* an arrangement of subtori of codimension one.

A wonderful model for the complement $M(\mathcal{A})$ is a smooth projective variety X containing $M(\mathcal{A})$ as open set whose complement $D = X \setminus M(\mathcal{A})$ is a simple normal crossing divisor, ie the irreducible components of D are smooth and "intersect locally as coordinate hyperplanes" in \mathbb{C}^d . A wonderful model for the complement $M(\mathcal{A})$ is a smooth projective variety X containing $M(\mathcal{A})$ as open set whose complement $D = X \setminus M(\mathcal{A})$ is a simple normal crossing divisor, ie the irreducible components of D are smooth and "intersect locally as coordinate hyperplanes" in \mathbb{C}^d .

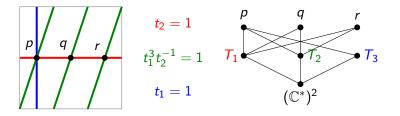
Theorem (Moci '12)

There exists a smooth variety $X_{\mathcal{G}}$ (non-compact) containing $M(\mathcal{A})$ whose complement is a simple normal crossing divisor.

Idea: consider $M(\mathcal{A}) \subset T$ and blow up some layers in $T \setminus M(\mathcal{A})$.

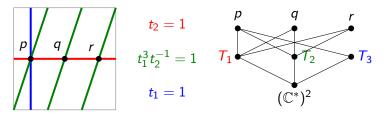
The *poset of layers* is the set S(A) of all connected components of intersections ordered by reverse inclusion.

Example



The *poset of layers* is the set S(A) of all connected components of intersections ordered by reverse inclusion.

Example



A building set $\mathcal{G} \subset \mathcal{S}(\mathcal{A})$ has the property that for all $W \in \mathcal{S}(\mathcal{A})$ the maximal elements G_1, \ldots, G_k in $\mathcal{G}_{\leq W}$ satisfy:

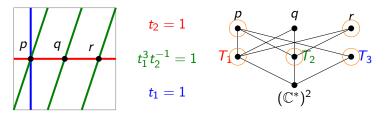
1.
$$W \in \bigvee_{i=1}^k G_1$$
,

2. codim
$$W = \sum_{i=1}^{k} \operatorname{codim} G_i$$
.

These G_i s are called *G*-factors of *W*.

The *poset of layers* is the set S(A) of all connected components of intersections ordered by reverse inclusion.

Example



A building set $\mathcal{G} \subset \mathcal{S}(\mathcal{A})$ has the property that for all $W \in \mathcal{S}(\mathcal{A})$ the maximal elements G_1, \ldots, G_k in $\mathcal{G}_{\leq W}$ satisfy:

1.
$$W \in \bigvee_{i=1}^k G_1$$
,

2. codim
$$W = \sum_{i=1}^{k} \operatorname{codim} G_i$$
.

These G_i s are called *G*-factors of *W*.

Let $\mathcal{G} \subset \mathcal{S}(\mathcal{A})$, let $X_{\mathcal{G}}$ be the (iterated) blow up in T of the elements in \mathcal{G} .

Proposition

If \mathcal{G} is a building set, then $X_{\mathcal{G}} \setminus M(\mathcal{A})$ is a simple normal crossing divisor.

Let $\mathcal{G} \subset \mathcal{S}(\mathcal{A})$, let $X_{\mathcal{G}}$ be the (iterated) blow up in T of the elements in \mathcal{G} .

Proposition

If \mathcal{G} is a building set, then $X_{\mathcal{G}} \setminus M(\mathcal{A})$ is a simple normal crossing divisor.

Definition

A $\mathcal G\text{-nested set}$ is $\mathcal T\subset \mathcal G$ such that:

1. the minimal elements T_1, \ldots, T_k of \mathcal{T} are the \mathcal{G} -factors of some W,

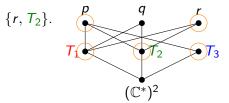
2. the sets
$$\mathcal{T}_{>T_i}$$
 are \mathcal{G} -nested for $i = 1, \ldots, k$.

Example

If $\mathcal{G} = \mathcal{S}(\mathcal{A}) \setminus \{\mathcal{T}\}$ is the maximal building set, the \mathcal{G} -nested set are the chains in $\mathcal{S}(\mathcal{A}) \setminus \{\mathcal{T}\}$.

Example

The G-nested sets are $\{T_1, T_2\}, \{p, T_1\}, \{p, T_2\}, \{p, T_3\}, \{r, T_1\}, \{p, T_2\}, \{p, T_3\}, \{r, T_1\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_2\}$

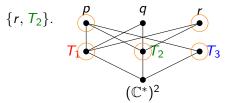


Example

If $\mathcal{G} = \mathcal{S}(\mathcal{A}) \setminus \{T\}$ is the maximal building set, the \mathcal{G} -nested set are the chains in $\mathcal{S}(\mathcal{A}) \setminus \{T\}$.

Example

The G-nested sets are $\{T_1, T_2\}, \{p, T_1\}, \{p, T_2\}, \{p, T_3\}, \{r, T_1\}, \{p, T_2\}, \{p, T_3\}, \{r, T_1\}, \{p, T_2\}, \{p, T_3\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_3\}, \{p, T_1\}, \{p, T_2\}, \{p, T_2\}$



Proposition

 $\mathcal{T} \subseteq \mathcal{G}$ is \mathcal{G} -nested set if and only if the corresponding divisors in $X_{\mathcal{G}}$ intersect.

Wonderful model

Idea [De Concini, Gaiffi]: consider a toric variety X_{Δ} and the inclusions $M(\mathcal{A}) \subset T \subset X_{\Delta}$.

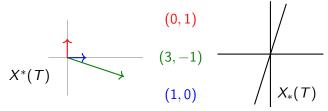
Problem: the closure of a layer $W \in A$ may be singular and the intersection with the divisors at "infinity" (i.e. in $X_{\Delta} \setminus T$) may not be transversal.

Idea [De Concini, Gaiffi]: consider a toric variety X_{Δ} and the inclusions $M(\mathcal{A}) \subset T \subset X_{\Delta}$.

Problem: the closure of a layer $W \in A$ may be singular and the intersection with the divisors at "infinity" (i.e. in $X_{\Delta} \setminus T$) may not be transversal.

Definition

A fan $\Delta \subset X_*(T)$ is equal sign w.r.t. W if there exists a basis χ_1, \ldots, χ_k of Γ_W such that every cone of Δ is entirely contained in H_i^+ or in H_i^- . A fan $\Delta \subset X_*(T)$ is equal sign w.r.t. $\mathcal{A} = \{W_1, \ldots, W_r\}$ if it is equal sign w.r.t. W_i for all i.

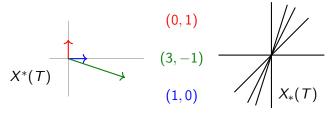


Idea [De Concini, Gaiffi]: consider a toric variety X_{Δ} and the inclusions $M(\mathcal{A}) \subset T \subset X_{\Delta}$.

Problem: the closure of a layer $W \in A$ may be singular and the intersection with the divisors at "infinity" (i.e. in $X_{\Delta} \setminus T$) may not be transversal.

Definition

A fan $\Delta \subset X_*(T)$ is equal sign w.r.t. W if there exists a basis χ_1, \ldots, χ_k of Γ_W such that every cone of Δ is entirely contained in H_i^+ or in H_i^- . A fan $\Delta \subset X_*(T)$ is equal sign w.r.t. $\mathcal{A} = \{W_1, \ldots, W_r\}$ if it is equal sign w.r.t. W_i for all i.



Lemma (De Concini, Gaiffi)

If Δ is a smooth complete fan with the equal sign property w.r.t. A then $\overline{W} \subset X_{\Delta}$ is smooth and intersects transversally the divisors at "infinity".

Let $X_{\Delta,\mathcal{G}}$ be the (iterated) blow up of X_{Δ} along the closure of layers in \mathcal{G} .

Lemma (De Concini, Gaiffi)

If Δ is a smooth complete fan with the equal sign property w.r.t. A then $\overline{W} \subset X_{\Delta}$ is smooth and intersects transversally the divisors at "infinity".

Let $X_{\Delta,\mathcal{G}}$ be the (iterated) blow up of X_{Δ} along the closure of layers in \mathcal{G} .

Theorem (De Concini, Gaiffi '19)

If Δ is a smooth complete fan with the equal sign property w.r.t. A and $\mathcal{G} \subset \mathcal{S}(A)$ is a building set, then $X_{\Delta,\mathcal{G}}$ is a wonderful model for M(A).

Example

With our previous choice, $X_{\Delta,\mathcal{G}}$ is the blow up of $\mathbb{P}^1 \times \mathbb{P}^1$ in 8 points.

Theorem (Keel '92)

Let $i: Y \subset X$ such that $i^*: H^{\bullet}(X) \twoheadrightarrow H^{\bullet}(Y)$ and call I the kernel. Then

$$H^{\bullet}(\mathrm{Bl}_{Y}(X)) \cong \frac{H^{\bullet}(X)[t]}{(It, P(t))},$$

where $i^*(P(t)) = c(N_Y(X), t)$ is any lifting of the Chern polynomial of the normal bundle.

Theorem (Keel '92)

Let $i: Y \subset X$ such that $i^*: H^{\bullet}(X) \twoheadrightarrow H^{\bullet}(Y)$ and call I the kernel. Then

$$H^{\bullet}(\mathsf{Bl}_{Y}(X)) \cong \frac{H^{\bullet}(X)[t]}{(It,P(t))},$$

where $i^*(P(t)) = c(N_Y(X), t)$ is any lifting of the Chern polynomial of the normal bundle.

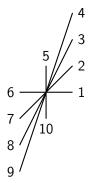
Theorem

The cohomology of the toric variety X_{Δ} is the algebra $\mathbb{Q}[c_r]_{r \in R_{\Delta}}$ with relations:

1.
$$c_{r_1}c_{r_2}\ldots c_{r_k}$$
 if the rays r_1, r_2, \ldots, r_k do not span a cone of Δ ,

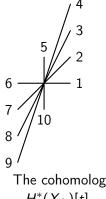
2.
$$\sum_{r \in R_{\Delta}} \langle \chi, r \rangle c_r$$
 for any $\chi \in X^*(T)$.

Example



Relations 1 give: $c_1c_3 = c_1c_4 = c_1c_5 = c_1c_6 = c_1c_7 = c_1c_8 = c_1c_9 = \dots = c_8c_{10} = 0$, relations 2 give: $c_1 + c_2 + c_3 + c_4 - c_6 - c_7 - c_8 - c_9 = 0$, $c_2 + 2c_3 + 3c_4 + c_5 - c_7 - 2c_8 - 3c_9 - c_{10} = 0$.

Example



Relations 1 give: $c_1c_3 = c_1c_4 = c_1c_5 = c_1c_6 = c_1c_7 = c_1c_8 = c_1c_9 = \dots = c_8c_{10} = 0$, relations 2 give: $c_1 + c_2 + c_3 + c_4 - c_6 - c_7 - c_8 - c_9 = 0$, $c_2 + 2c_3 + 3c_4 + c_5 - c_7 - 2c_8 - 3c_9 - c_{10} = 0$.

The cohomology of $Bl_p(X_{\Delta})$ is $H^*(X_{\Delta})[t]/(tc_i, t^2 - (c_1 + c_2 + c_3 + c_4)(c_2 + 2c_3 + 3c_4 + c_5))$.

Cohomology

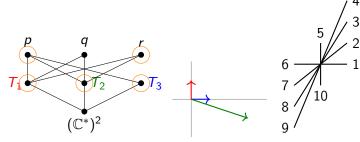
The irreducible components of $X_{\Delta,\mathcal{G}} \setminus M(\mathcal{A})$ are \overline{W} for $W \in \mathcal{G}$ and C_r for $r \in R_{\Delta}$. The divisors \overline{W} , C_r for $W \in \mathcal{A} \subset \mathcal{G}$ and $r \in B \subset R_{\Delta}$ have nonempty intersection if and only if;

- 1. A is G-nested,
- 2. B spans a cone of Δ ,
- 3. for all $W \in A$, $r \in B$ we have $r \in Ann \Gamma_W$.

Cohomology

The irreducible components of $X_{\Delta,\mathcal{G}} \setminus M(\mathcal{A})$ are \overline{W} for $W \in \mathcal{G}$ and C_r for $r \in R_{\Delta}$. The divisors \overline{W} , C_r for $W \in \mathcal{A} \subset \mathcal{G}$ and $r \in B \subset R_{\Delta}$ have nonempty intersection if and only if;

- 1. A is G-nested,
- 2. *B* spans a cone of Δ ,
- 3. for all $W \in A$, $r \in B$ we have $r \in Ann \Gamma_W$.



 $C_1 \cap C_2 \neq \emptyset, \ T_1 \cap T_2 \neq \emptyset, \ T_1 \cap C_6 \neq \emptyset,$ $C_1 \cap C_6 = T_1 \cap T_3 = T_1 \cap C_2 = \emptyset.$

Theorem (De Concini, Gaiffi '19)

The cohomology of the intersection of divisors associated with A and B is the algebra generated by $t_W, c_r, W \in \mathcal{G}, r \in R_\Delta$, with relations:

T1
$$\prod_{r \in B'} c_r$$
 if $B \cup B'$ do not span a cone of Δ
T2 $\sum_{r \in R_{\Delta}} \langle \chi, r \rangle c_r$ for any $\chi \in X^*(T)$,
W1 c_r if $r \notin Ann \Gamma_W$ for all $W \in A$,

W2 $c_r t_W$ if $r \notin Ann \Gamma_W$,

W3a for all $W \in \mathcal{G}$ and all $A' \subseteq \mathcal{G}_{< W}$, the relations

$$\mathcal{P}_{W}^{V}\Big(\sum_{L\in\mathcal{G}_{\geq W}}-t_{L}\Big)\prod_{L\in\mathcal{A}'}t_{L},$$

where $V \in \bigvee_{L \in A_{\leq W} \cup A'} L$ and V < W, W3b $\prod_{W \in A'} t_W$ if $A' \cup A$ is not \mathcal{G} -nested or $B \not\subset \bigcap_{W \in A'} Ann \Gamma_W$.

Cohomology

The Morgan algebra M of a simple normal crossing divisor $D = \bigcup_{i=1}^{n} D_i \subset X$ is the differential graded algebra

$$\bigoplus_{A\subset [n]} H^{\bullet}(\cap_{i\in A} D_i)$$

with product induced by the cup product

$$H^{p}(\cap_{i\in A}D_{i})\otimes H^{q}(\cap_{i\in B}D_{i}) \to H^{p+q}(\cap_{i\in A\sqcup B}D_{i})$$

and differential induced by the Gysin maps
 $H^{p}(\cap_{i\in A}D_{i}) \to H^{p+2}(\cap_{i\in A\setminus\{a\}}D_{i}).$

Theorem (Morgan '78)

The dga M is a model for $X \setminus D$, hence $H(M, d) = H(X \setminus D)$.

Theorem (Moci, P. '20)

The Morgan algebra $M(\mathcal{A}, \Delta, \mathcal{G})$ for the wonderful model $X_{\Delta, \mathcal{G}}$ is generated by s_W, t_W, b_r, c_r for $W \in \mathcal{G}$ and $r \in R_\Delta$ with relations:

- 1. if $r \notin Ann \Gamma_W$: $s_W b_r$, $s_W c_r$, $t_W b_r$, and $t_W c_r$,
- 2. $\prod_{W \in A} s_W \prod_{W \in B} t_W$ if $A \cup B$ is not a \mathcal{G} -nested set,
- 3. $\prod_{r\in A} b_r \prod_{r\in B} c_r$ if $A \cup B$ is not a cone in Δ ,

4.
$$\sum_{r \in R_{\Delta}} \langle \chi, r \rangle c_r$$
 for every $\chi \in \Lambda$,

5. $P_W^V(\sum_{L \in \mathcal{G}_{\geq W}} -t_L) \prod_{L \in A} s_L \prod_{L \in B} t_L$ for $W \in \mathcal{G}$, and $A, B \subseteq \mathcal{G}_{\leq W}$, where $V \in \bigvee_{L \in A \cup B} L$ and V < W.

and differential d defined on generators by $d(s_W) = t_W$, $d(b_j) = c_j$, and $d(t_W) = d(c_j) = 0$. Now we assume that $\mathcal{A} = \{H_1, \ldots, H_n\}$ contains only codimension 1 subtori and let $\mathcal{G} = \mathcal{S}(\mathcal{A}) \setminus \{T\}$ be the maximal building set. In this case $\Gamma_{H_i} \cong \mathbb{Z}$ is generated by one element $\pm \chi_i$. The rank function $A \mapsto \operatorname{codim}(\bigcap_{a \in A} H_a)$ define a matroid $([n], \operatorname{rk})$. Now we assume that $\mathcal{A} = \{H_1, \ldots, H_n\}$ contains only codimension 1 subtori and let $\mathcal{G} = \mathcal{S}(\mathcal{A}) \setminus \{T\}$ be the maximal building set. In this case $\Gamma_{H_i} \cong \mathbb{Z}$ is generated by one element $\pm \chi_i$. The rank function $A \mapsto \operatorname{codim}(\bigcap_{a \in A} H_a)$ define a matroid $([n], \operatorname{rk})$.

Definition (Branden-Moci '14, D'Adderio-Moci '13)

The multiplicity function $A \mapsto \#c.c. \cap_{a \in A} H_a$ defines an arithmetic matroid $([n], \mathrm{rk}, m)$.

The choice of one between χ_i and $-\chi_i$ defines an *oriented matroid*: for any minimal linear relation $\sum_{i \in C} n_i \chi_i = 0$ the *orientation* of *C* is $i \mapsto \text{sgn}(n_i)$.

Now we assume that $\mathcal{A} = \{H_1, \ldots, H_n\}$ contains only codimension 1 subtori and let $\mathcal{G} = \mathcal{S}(\mathcal{A}) \setminus \{T\}$ be the maximal building set. In this case $\Gamma_{H_i} \cong \mathbb{Z}$ is generated by one element $\pm \chi_i$. The rank function $\mathcal{A} \mapsto \operatorname{codim}(\bigcap_{a \in \mathcal{A}} H_a)$ define a matroid $([n], \operatorname{rk})$.

Definition (Branden-Moci '14, D'Adderio-Moci '13)

The multiplicity function $A \mapsto \#c.c. \cap_{a \in A} H_a$ defines an arithmetic matroid $([n], \mathrm{rk}, m)$.

The choice of one between χ_i and $-\chi_i$ defines an *oriented matroid*: for any minimal linear relation $\sum_{i \in C} n_i \chi_i = 0$ the *orientation* of *C* is $i \mapsto \text{sgn}(n_i)$.

Definition (P. '20)

The rank function, multiplicity function, and orientation defines a *oriented arithmetic matroid*.

Divisorial case

If $W = \bigvee_{a \in A} H_a$ is *complete intersection*, a lift of the Chern polynomial $P_W(t)$ is the following:

$$P_{W}(t) = \prod_{a \in A} \left(t - \sum_{r \in R_{\Delta}} \min(0, \langle \chi_{a}, r \rangle) c_{r} \right).$$

Another possible choice is

$$P_W(t) = t^{|A|} + \prod_{a \in A} \Big(\sum_{r \in R_\Delta} -\min(0, \langle \chi_a, r \rangle) c_r \Big).$$

in both cases depends on the choice of A and χ_a .

Divisorial case

If $W = \bigvee_{a \in A} H_a$ is *complete intersection*, a lift of the Chern polynomial $P_W(t)$ is the following:

$$P_W(t) = \prod_{a \in A} \left(t - \sum_{r \in R_\Delta} \min(0, \langle \chi_a, r \rangle) c_r \right).$$

Another possible choice is

$$P_W(t) = t^{|A|} + \prod_{a \in A} \Big(\sum_{r \in R_\Delta} -\min(0, \langle \chi_a, r \rangle) c_r \Big).$$

in both cases depends on the choice of A and χ_a .

Example

In ker d
$$\subset$$
 M($\mathcal{A}, \Delta, \mathcal{G}$) contains $\psi_i := \sum_{r \in \mathcal{R}_\Delta} \langle \chi_i, r \rangle b_j$ and
 $\omega_{H_i,i} := -\sum_{W > H_i} s_W - \sum_{r \in \mathcal{R}_\Delta} \min(0, \langle \chi_i, r \rangle) b_r$ by relations 4 and
5.

Theorem (Moci, P. '20)

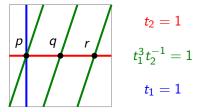
There exists a subalgebra of $M(\mathcal{A}, \Delta, \mathcal{G})$ isomorphic to $H^{\bullet}(T)[\omega_{W,A}]/I$ (A independent, $W \in \bigvee_{a \in A} H_a$) where I is generated by:

1.
$$\omega_{W,A}\omega_{W',A'} = \pm \sum_{L \in W \lor W'} \omega_{L,A \sqcup A'},$$

2. $\omega_{W,A}\psi = 0$ if $\psi_{|W} = 0,$
3. for $X \subset [n]$ such that $\operatorname{rk}(X) = |X| - 1$ $(X = C \sqcup F)$ and associated relation $\sum_{i \in C} n_i \chi_i$, for $L \in \bigvee_{x \in X} H_x$:

$$\sum_{\substack{F \subseteq A \subseteq X \\ C \setminus A \text{ positroids}}} (-1)^{|X_{< j}|} \frac{m(A)}{m(X \setminus \{j\})} \omega_{W,A}\psi_B = 0$$
where $j = \min(C \setminus A), B = C \setminus (A \cup \{j\})$ and $\psi_B = \prod_{b \in B} \psi_b$
an element in $H^{\bullet}(T)$.
nd is isomorphic to $H(M(A); \mathbb{Q})$.

а



The linear relation is
$$\chi_1 + \chi_2 - 3\chi_3 = 0$$

 $\omega_1 \omega_2 = \omega_{p,12} + \omega_{q,12} + \omega_{r,12}$
 $\omega_1 \psi_2 = 0$
 $\omega_1 \omega_3 = \omega_{p,13}$
 $\omega_2 \omega_3 = \omega_{p,23}$
 $\omega_2 \psi_1 = 0$
 $\omega_2 \psi_1 = 0$

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. '19) There exists a subalgebra of the algebraic de Rham complex of M(A) isomorphic to $H^{\bullet}(T)[\overline{\omega}_{W,A}]/I$ (A independent, $W \in \bigvee_{a \in A} H_a$) where I is generated by: 1. $\overline{\omega}_{W,A}\overline{\omega}_{W',A'} = \pm \sum_{L \in W \lor W'} \overline{\omega}_{L,A \sqcup A'}$, 2. $\overline{\omega}_{W,A}\psi = 0$ if $\psi_{|W} = 0$,

3. for $X \subset [n]$ such that $\operatorname{rk}(X) = |X| - 1$ ($X = C \sqcup F$) and associated relation $\sum_{i \in C} n_i \chi_i$, for $L \in \bigvee_{x \in X} H_x$:

$$\sum_{\substack{j \in C}} \sum_{\substack{F \subseteq A \subseteq X \setminus \{j\} \\ |B| \text{ even}}} (-1)^{|X_{< j}|} \frac{m(A)}{m(X \setminus \{j\})} \overline{\omega}_{W,A} c_B \psi_B = 0$$

where $B = C \setminus (A \cup \{j\})$, $c_B = \prod_{b \in B} \operatorname{sgn}(n_b)$, and $\psi_B = \prod_{b \in B} \psi_b$ an element in $H^{\bullet}(T)$, and it is isomorphic to $H(M(\mathcal{A}); \mathbb{Q})$.

	Subspace	Toric
Additive co- homology	Goresky-MacPhearson '80	De Concini-Procesi '05 ¹ , Deshpande '18, Moci-P. '20
Wonderful model	De Concini-Procesi '95	De Concini-Gaiffi '19
Small model	Yuzvinsky '89	Moci-P. '20 ¹
Cohomology ring	Orlik-Solomon '80 ¹ , Feichtner-Ziegler '00, de Longueville-Schultz '00 Deligne-Goresky- MacPhearson '00	C.D.D.M.P. '19 ¹ , Moci-P. '20 ¹
Non- realizable	Adiprasito-Huh-Katz '18, Bibby-Denham- Feichtner '19	???

¹Divisorial case

Thanks for listening!

roberto.pagaria@unibo.it