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Introduction

This Ph.D. thesis presents my results obtained in the last three years. These
results have appeared in the following preprints and articles: [Pag19b, Pag19d,
CDD+18, Pag18a, Pag18c, Pag19c, Pag18b, Pag19a, PP19b]. Initially, I inves-
tigated toric arrangements, a type of arrangements inspired by the hyperplane
ones. Toric arrangements have been studied intensively in the last fifteen years
both from topological and from combinatorial point of view. My results de-
scribe the cohomology ring of toric arrangements and their dependency from
the combinatorial data. Later I have worked on another type of arrangements,
i.e. elliptic arrangements, which are tougher than the toric case. I focused on
the most regular case, i.e. the braid arrangements, that coincides with the
configuration spaces of points in an elliptic curve. I have obtained some re-
sults on the unordered configuration space of points in an elliptic curve, and I
have generalized some of them to configurations on closed orientable surfaces.
Only very recently I have made some conjectures about the cohomology of
braid elliptic arrangements.

Main results

An arithmetic matroid is a generalization of a matroid encoding a multiplicity
function. It is used to encode the combinatorics of toric arrangements, but the
theory is different from the classic setting. One main difference is the lack of a
criptomorphism between arithmetic matroids and posets of layers, as shown by
Theorem C. Another difference involves the representability problem: in the
classical case is very hard to determine if a matroid is representable. While,
in the arithmetic setting we have the following theorem.

Theorem A. A surjective, torsion-free arithmetic matroid is representable if
and only if it is strong GCD and orientable. In this case there exists a unique
representation.

Moreover, a torsion-free arithmetic matroid has a finite number of repre-
sentations, explicitly classified.

Theorem A is proven by developing a theory of “orientable arithmetic
matroids” that combines arithmetic matroids with orientable matroids. The
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proof involves both combinatorics and linear algebra, such as the Smith normal
form.

In a joint work with Filippo Callegaro, Michele D’Adderio, Emanuele
Delucchi and Luca Migliorini, we provide a description of the cohomology
algebra of the complement of a toric arrangement. Our presentation is given
by generators and relations, following the analogous Orlik-Solomon presenta-
tion for hyperplane arrangements.

Theorem B. The rational cohomology algebra of a toric arrangement A is
the algebra generated by eW,A;B for W ∈ S(A) with relations:

eW,A;BeW ′,A′;B′ = ±
∑

L∈π0(W∩W ′)

eL,A∪A′;B∪B′ ,∑
i∈E

nieT,∅;{i} = 0,

∑
AtBt{j}=C
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
eW,A;B = 0.

An analogous but more complicate presentation holds for the cohomology ring
with integer coefficients.

As a consequence of Theorem A, the rational cohomology of the comple-
ment algebra depends only on the poset of connected components of the tori
in the arrangement (poset of layers).

We prove Theorem B by refining a previous theorem of De Concini and
Procesi, based on the computation of the algebraic De Rham complex. We
manipulate some polynomial identities and we study special coverings of toric
arrangement; this two facts lead to the proof of Theorem B. Weaker results
have been obtained studying the Leray spectral sequence for the inclusion of
the complement in the ambient torus.

Let A and A′ be the two toric arrangements described by the following
integer matrices:

N =

1 1 1 3
0 5 0 5
0 0 5 5

 , N ′ =

1 4 1 6
0 5 0 5
0 0 5 5

 .

Theorem C shows that the rational cohomology ring is not determined by
the arithmetic matroid and by the matroid over Z, two structures encoding the
combinatorics of toric arrangements. Nevertheless, the poset of layers cannot
describe the cohomology ring with integer coefficients.

Theorem C. The poset of layers S(A) and S(A′) are non-isomorphic and
the algebras H(M(A);Q) and H(M(A′);Q) are non-isomorphic. However, N
and N ′ describe the same arithmetic matroid and the same matroid over Z.
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Moreover, there exist two toric arrangements with isomorphic posets of
layers and non-isomorphic cohomology algebras with integer coefficients.

This example was found by making the following observations. Consider
an arithmetic matroid whose underlying matroid is modular, then there exist
at most one representation of the arithmetic matroid. An analogous result
holds for arithmetic matroids whose associated group is cyclic.

Let Cn(Σg) be the unordered configuration spaces of n points on the closed
orientable surface Σg of genus g. For g = 1, we present the rational cohomology
ring of Cn(E) by using the representation theory of SL2(Q) as follows.

Theorem D. The rational cohomology ring of Cn(E) is isomorphic to

∧• V1 ⊗ S• V1[b]�
(ab

n+1
2
c, ab

n
2
cb)SL2(Q)

,

where a is a non-zero degree-one element of S1V1 and b is an SL2(Q)-invariant
variable of degree 3.

This theorem is obtained computing the Sn-invariant elements of the Križ
model for the configuration space on the torus. The multiplicative structure is
determine by finding a small set of generators and then we explicitly compute
some non-vanishing of products in the Križ model.

In higher genus, we cannot determine the ring structure of the cohomology
H(Cn(Σg)). However, we used the richer representation theory of Sp(2g) to
obtain the following results on the cohomology module. Consider the weight
filtration W on H(Cn(Σg);Q) given by the mixed Hodge structure, the graded
cohomology is grW H(Cn(Σg);Q). We describe grW H(Cn(Σg);Q) as a bi-
graded symplectic representation of the mapping class group of Σg. Let Vω be
the irreducible representation of the symplectic Lie algebra of highest weight
ω. Since we are working on finite dimensional representations of the group
Sp(2g), it is useful to consider the Grothendieck ring Rg, i.e. the free Z-module
having as a basis the set of irreducible representations of Sp(2g) up to isomor-
phisms. Let [Vω] ∈ Rg be the element corresponding to the representation
Vω for any dominant weight ω. The cohomological stability was proven for
unordered configurations spaces, therefore we describe all the spaces Cn(Σg),
for n ∈ N, simultaneously. We do it by considering the formal power series in
3 variable over the ring Rg.

Theorem E. For g > 0, we have the following equality in Rg[[t, s, u]]:∑
i,j,n

[grWi+2j H
i+j(Cn(Σg))]t

isjun =

1

1− u

(
(1 + t2su3)(1 + t2u) + (1 + t2su2)t2gsu2(g+1)+

+ (1 + t2su2)(1 + t2su3)
∑

1≤j≤g
i≥0

[Viω1+ωj ]t
j+isiuj+2i(1 + t2(g−j)su2(g−j+1))

)
.

Cohomology and Combinatorics of Toric Arrangements 7
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In the previous formula, only the representations associated to weights of
the form iω1 + ωj appear. Notice that the coefficient of un is a polynomial in
the ring Rg[t, s] and it coincides with the mixed Hodge polynomial of Cn(Σg).
By setting t = s, we obtain the Poincaré polynomial of Cn(Σg) with coefficients
in Rg.

In order to obtain the analogous results with the ring Z instead of Rg, we
need to compute their image under the map dim:Rg → Z. By using the Weyl
dimension formula we calculate the dimension of the representations of the
symplectic group Sp(2g) appearing in our formula.

Lemma F. We have

dimViω1+ωj =

(
2g + i+ 1

i, j

)
2g + 2− 2j

2g + 2 + i− j
j

i+ j
.

Therefore we obtain a closed formula for the mixed Hodge numbers and
the Betti numbers of Cn(Σg); those formulas does not have any cancellations,
indeed these numbers are sum of dimensions of the previous representations.

Overview

The chapters are meant to be self-contained. To achieve this, each chapter
begins with the recalling of the needed results and notations from the previous
ones.

In Chapter 1, we define and study orientable arithmetic matroids and
we apply this new theory to realizable arithmetic matroids. We recover for
orientable arithmetic matroids the basic constructions of matroids: deletion,
contraction and duality. By studying GP-functions, we obtain the uniqueness
of the orientation. Strengthening the condition “greatest common divisor”, we
obtain a necessary condition for the realizability of torsion-free surjective arith-
metic matroids. Orientability and the “strong GCD” property are equivalent
to the representability of torsion-free surjective arithmetic matroids. Finally,
by using a new operation between quasi-arithmetic matroids – called “reduc-
tion” – we classify all the representations of torsion-free arithmetic matroids.

In Chapter 2, the cohomology of the complement of toric arrangements is
investigated. We start from the graded cohomology ring both with integer and
rational coefficients. The main technique used is the Leray spectral sequence.
We provide a presentation for the cohomology ring by covering in a non-trivial
way a toric arrangement with unimodular toric arrangements. This result is
presented firstly for the rational cohomology and then for the integer one. The
last result concerns the generation in degree one of the cohomology ring.

In Chapter 3, we discuss the relation between the combinatorics of a toric
arrangement (arithmetic matroid, poset of layers) and the cohomology ring
of its complement. We also study discriminantal toric arrangements and the
special case of toric arrangements whose associated matroid is modular. The
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main results of this chapter are the examples in the last two sections. The
first one shows that the integral cohomology of toric arrangements is not
determined by the poset of layers. The second example provides two toric
arrangements describing isomorphic arithmetic matroids, but having different
posets of layers and different rational cohomology algebras of the complements.

In Chapter 4, we focus on configuration spaces of closed orientable surfaces.
We expose the representation theory of the Križ model for the cohomology.
In genus one the Križ model is huge and complicate, and its cohomology
is unknown, however we conjecture a closed formula for the mixed Hodge
numbers in the ordered case. In the unordered case we provide a presentation
of the cohomology ring keeping track of the mixed Hodge structure and of the
action of the mapping class group. Finally, we obtain analogous statements
for unordered configuration spaces in arbitrary genus, but only as a module.

Cohomology and Combinatorics of Toric Arrangements 9





Chapter 1

Arithmetic Matroids

The aim of this chapter is to relate two different generalizations of matroids:
the oriented matroids and the arithmetic matroids. We want to give a defini-
tion of “oriented arithmetic matroid” and prove properties like the “uniqueness
of orientation”. This leads to a complete classification of all representation of
a torsion-free arithmetic matroid.

Oriented matroids have a large use in mathematics and science (for general
reference see [BLVS+99, Oxl11]); they are related to the simplex method for
linear programming, to the chirality of molecules in theoretical chemistry, and
to knot theory. For instance, the Jones polynomial of a link is a specialization
of the signed Tutte polynomial (see [Kau89]) of an oriented graphic matroid
[Thi87, Jae88]. Another interesting fact is the correspondence between ori-
ented matroids and arrangements of pseudospheres [FL78] that generalizes
the correspondence between representable matroids and central hyperplane
arrangements.

Arithmetic matroids – introduced in [DM13, BM14] – appear as a com-
binatorial object related to the cohomology of the complement of a toric ar-
rangement [DP05, Moc12a, CDD+18]. The study of toric arrangements is
related to zonotopes, partition functions, box splines, and Dahmen-Micchelli
spaces (see [DPV10, DP11, Moc12a]). All standard operations with matroids,
e.g. deletion, contraction, duality, are generalized to arithmetic matroids in a
consistently way. Recently, a new operation between two arithmetic matroids
over the same matroid is discovered by Delucchi e Moci [DM18].

The correspondence between representable arithmetic matroids and cen-
tral toric arrangements has not been generalized to the non-representable
cases, so far. With the aim of filling this gap, we define a class of arithmetic
matroids which we call orientable arithmetic matroids (see Definition 1.1.10)
hoping that these correspond to “arrangements of pseudo-tori”.

An r × n matrix with integer coefficients describes at the same time a
central toric arrangement, an oriented matroid, and an arithmetic matroid.
It comes natural to say that two matrices are equivalent if they describe two

11
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toric arrangements that differ by an automorphism of the ambient torus. Ge-
ometrically, the group GLr(Z) × (Z2)n acts on the space M(r, n;Z) by left
multiplication and sign reverse of the columns. Two representation (i.e. ma-
trices) of the arithmetic matroid are equivalent if and only if they belong to
the same GLr(Z)× (Z2)n-orbit.

The space M(r, n;Z) is included in M(r, n;Q) and the action of GLr(Z)×Zn2
extends naturally to the one of GLr(Q)×Zn2 . Lemma 1.7.6 shows that all rep-
resentations of an arithmetic matroid belong to the same GLr(Q)×(Z2)n-orbit.
By this fact, it can be easily deduced that representable arithmetic matroids
have a unique orientation. We extend this result to the non-representable case,
showing (Theorem 1.4.1) that orientable arithmetic matroids have a unique
orientation (up to re-orientation).

Sections 1.1 to 1.4 and 1.6 are published in [Pag18a] and Sections 1.5
and 1.8 will appear in the preprint [PP19b] written with Giovanni Paolini.
Sections 1.7 and 1.9 are part of the paper [Pag19b], the version below is quite
different from the published version. [Pag19b, Theorem 5.6] contains a mis-
take, a corrected version of it is stated and proved below, see Theorem 1.9.9.

Plan

In Section 1.1 we start by recalling some standard definitions and by describing
the basic construction in Section 1.2. We introduce a compatibility condition,
eq. (GP), between the orientation and the multiplicity function of an oriented
arithmetic matroid. The condition (GP) coincides with the Plücker relation
for the Grassmannian and we prove that oriented arithmetic matroids are
closed under deletion, contraction, and duality. Next, in Section 1.3, we show
that the condition (GP) implies a generalization of the Leibniz rule for the
determinant. We state and prove a result about the uniqueness of orientation
(Section 1.4) so that it makes sense to talk of orientable arithmetic matroids
instead of oriented arithmetic matroids. We state, in Section 1.5, the condi-
tion “strong GCD” that implies the representability of orientable arithmetic
matroids, as proven in Section 1.6. Moreover, we show that orientable arith-
metic matroids, upon forgetting the multiplicity function, are representable
matroids (see Proposition 1.6.1). A torsion-free surjective arithmetic matroid
has a unique representation up to equivalence; this fact is proven in Section 1.7.
Later, in Section 1.8, we introduce a new operation on quasi-arithmetic ma-
troids, called “reduction”, in order to classify all representations of an arith-
metic matroid (Section 1.9).

The entire discussion can be generalized to quasi-arithmetic matroids and
so to matroids over Z (see [FM16]). It is not clear to the author how arith-
metic matroids and orientable arithmetic matroids are related to matroids
over hyperfields (see [BB16]).

12 Roberto Pagaria



1.1. DEFINITIONS

1.1 Definitions

Let E be a ground set, i.e. a finite totally ordered set. We will frequently
make use of r-tuples of elements of E, so with an abuse of notation for any
set A = {a1, . . . , ar} ⊂ E we will write A for the increasing tuple (a1, . . . , ar).

1.1.1 Matroids

Let ve for e ∈ E be some elements in a finite generated abelian group H.
As elements of the vector space Q ⊗ H, the elements ve determine linear
dependency relations. The family

C := min
⊆
{C ⊆ E | {ve}i∈C is a linearly dependent set }

of index sets of minimal linear dependencies among this elements in H is
the set of circuits of a matroid M on the set E We point to [Oxl11] for an
introduction to this theory.

We give the definition of a matroid in terms of its basis, since [Oxl11,
Theorem 1.2.3] shows that it is equivalent to the one given in terms of circuits.

Definition 1.1.1. A matroid over a the ground set E is a non-empty set
B ⊂ P(E) satisfying the following exchange property:

∀B1, B2 ∈ B ∀x ∈ B1 \B2 ∃ y ∈ B2 \B1 such that B1 \ {x} ∪ {y} ∈ B. (1.1)

Since this definition of matroids is cryptomorphic to the one involving the
rank function (see [Oxl11, Theorem 1.3.2]), we denote a matroid with the pair
(E, rk).

Throughout this paper we will denote the r-tuples (yi, x2, . . . , xr) by xi
and (y0, . . . , yi−1, yi+1, . . . , yr) by yi, for i = 0, . . . , r, where x = (x2, . . . , xr)
and y = (y0, . . . , yr).

Definition 1.1.2 ([BLVS+99, Definition 3.5.3]). A chirotope χ is a function
χ :Er → {−1, 0, 1} such that:

(B0) it is not identically zero, i.e. χ 6≡ 0,

(B1) it is alternating, i.e. χ(σx) = sgn(σ)χ(x) for all σ ∈ Sr,

(B2) for all x2, . . . , xr and all y0, . . . , yr ∈ E such that

χ(xi)χ(yi) ≥ 0,

for all i > 0, then we have

χ(x0)χ(y0) ≥ 0.

Cohomology and Combinatorics of Toric Arrangements 13



CHAPTER 1. ARITHMETIC MATROIDS

We say that two chirotopes χ and χ′ are the same chirotope if χ = χ′ or
if χ = −χ′. This choice is not standard but useful for the notation.

Definition 1.1.3 ([BLVS+99, p. 134]). The re-orientation with respect to
A ⊆ E of a chirotope χ is the chirotope χ′ defined by

χ′(x) = (−1)|A∩{x1,...,xr}|χ(x).

Two chirotopes are equivalent if one is a re-orientation of the other one.

The set {{b1, . . . , br} ⊂ E | χ(b1, . . . , br) 6= 0} is the matroid over E
associated with the chirotope χ. A signed circuit in E is a function c :C →
{±1} where C ⊂ E. An oriented matroid is a collection of signed circuit
that satisfies some properties listed in [BLVS+99, Definition 3.2.1]. A well-
known cryptomorphism of Lawrence [Law82] between oriented matroids and
chirotopes is stated in [BLVS+99, Theorem 3.5.5].

We can define the set of signed circuit associated with the chirotope χ as
follow. Each circuit C ⊆ E of the matroid associated with χ can be considered
as an ordered set with the total order induced by E. Choose an ordered set
a = (a1, a2, . . . , ar−s) such that rk(C ∪ a) = r. Let c be the function defined
by

c(i) = ci
def
= (−1)iχ(x0, . . . , x̂i, . . . , xs, a1, . . . , ar−s),

it does not depend on the choice of the total order and, up to a global negation,
the function c does not depend on the choice of a.

Definition 1.1.4. The set of signed circuit associated with χ is the set of
function { c,−c :C → {±1 } | C circuit } defined above.

For every matroid M = (E, rk) and every subset A ⊆ E we denote by
M/A the contraction of A and with M\A the deletion of A.

Let us recall the definition of arithmetic matroid introduced in [DM13,
BM14].

Definition 1.1.5. A molecule (A,F, T ) of the matroid (E, rk) is a triple of
sets AtF tT ⊆ E such that rk(F tA) = |F |+ rk(A) and rk(AtT ) = rk(A).

Definition 1.1.6. An arithmetic matroid is (E, rk,m) such that (E, rk) is a
matroid and m : P(E)→ N+ = {1, 2, . . . } a function satisfying:

1. if A ⊆ E and x ∈ E is dependent on A, then m(A ∪ {x })|m(A);

2. if A ⊆ E and x ∈ E is independent from A, then m(A)|m(A ∪ { v });

3. if (A,F, T ) is a molecule then

m(A)m(A t F t T ) = m(A t F )m(A t T );

14 Roberto Pagaria
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4. if (A,F, T ) is a molecule then

ρ(A,A t F t T )
def
=

∑
A⊆S⊆AtFtT

(−1)|A|+|T |−|S|m(S) ≥ 0.

We call m the multiplicity function.

A pseudo-arithmetic matroid is a matroid with a multiplicity function that
satisfies only 4. A quasi-arithmetic matroid is a matroid with a multiplicity
function that satisfies 1 – 3.

Definition 1.1.7. An arithmetic matroid (E, rk,m) is representable if there
exists a finite generated abelian group H and a list of elements (he)e∈E of H
such that

rk(A) = rank
(
〈he〉e∈A

)
and m(A) =

∣∣∣Tor
(
H�〈he〉e∈A

)∣∣∣
for all A ⊆ E. We call a such collection (he)e∈E in H a representation of the
arithmetic matroid. The representation is essential if rkH = rk(E).

For sake of notation we define for each representation ΓA = 〈he〉e∈A < H
and for each subgroup K < H we set [H : K] = |Tor(H/K)|.

Definition 1.1.8. An arithmetic matroid (E, rk,m) is said to be torsion-free
if m(∅) = 1 and surjective if m(E) = 1.

A polynomial invariant for arithmetic matroids was introduced by Moci
[Moc12a]:

Definition 1.1.9. The arithmetic Tutte polynomial of an arithmetic matroid
(E, rk,m) is the following polynomial

T (x, y) =
∑
A⊆E

m(A)(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

The arithmetic Tutte polynomial has good properties: it has positive coeffi-
cients, satisfies the deletion-restriction property and can be defined in terms of
internal and external activities of the arithmetic matroid. It specializes to the
Poincaré polynomial of a toric arrangement, to the characteristic polynomial
of the poset of layers, to the Hilbert series of the associated Dahmen-Micchelli
space. Moreover, it counts the number of integer points of the associated
zenotope and the connected components of arrangements in the compact torus
(S1)r ([Law11]). This polynomial is further generalized to the G-Tutte poly-
nomial, see [LTY17, Tra18, TY19] and to the universal Tutte character, see
[DFM17]. The arithmetic Tutte polynomial associated with a root system is
computed in [ACH15] and for type An in [Ber19].

Cohomology and Combinatorics of Toric Arrangements 15



CHAPTER 1. ARITHMETIC MATROIDS

Definition 1.1.10. An oriented arithmetic matroid (E, rk,m, χ) is a matroid
(E, rk) of rank r together with two structures: a chirotope χ :Er → {−1, 0, 1}
and a multiplicity function m :P(E)→ N+ such that:

1. The unoriented matroid associated with the chirotope χ is the matroid
(E, rk).

2. The triple (E, rk,m) is an arithmetic matroid.

3. For all x2, . . . , xr and all y0, . . . , yr ∈ E the following equality holds

r∑
i=0

(−1)iχ(xi)m(xi)χ(yi)m(yi) = 0, (GP)

where xi = (yi, x2 . . . , xr) and yi = (y0, . . . yi−1, yi+1 . . . yr).

An arithmetic matroid is orientable if there exists a chirotope that makes
the arithmetic matroid oriented.

Remark 1.1.11. Our property (GP), related to the Grassmannian-Plücker re-
lations, implies the properties (GPr), for all r, defined in [Len17b, Definition
10.3].

Notice that the compatibility condition (GP) involves only the values of
the multiplicity function on the basis of (E, rk).

Remark 1.1.12. The condition (GP) implies (B2) of Definition 1.1.2.

Let H be a finite generated abelian group, and B be a basis of HQ :=
H ⊗Z Q.

Definition 1.1.13. A representation (he)e∈E in H of an oriented arithmetic
matroid (E, rk,m, χ) is a collection of elements in the finite generated abelian
group H such that:

1. they are a representation of the arithmetic matroid (E, rk,m),

2. for each A ∈ Er we have

χ(A) = sgn(detMB({ha ⊗ 1 }a∈A)),

where MB({ha ⊗ 1 }a∈A) is the matrix that represent the vectors ha⊗ 1
in the basis B.

Remark 1.1.14. The above definition does not depend on the choice of the
basis since we consider χ and −χ the same chirotope.
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1.2 Basic constructions

Deletion

The deletion of A ⊆ E is an operation defined for matroids [Oxl11, p. 22],
for oriented matroids [BLVS+99, p. 133], and for arithmetic matroids [DM13,
section 4.3] [BM14, section 3]. We now define a deletion operation for oriented
arithmetic matroids.

Define s = rk(E \A) and choose a = (a1, a2, . . . , ar−s) be such that rk((E \
A) ∪ a) = r. Let χ \ A : (E \ A)s → {−1, 0, 1} be the function defined by
χ \ A(z) = χ(z ∪ a). The collection (E \ A, rk \A,m \ A,χ \ A) satisfies the
first two conditions of Definition 1.1.10.

Proposition 1.2.1. The collection (E \A, rk \A,m \A,χ \A) is an oriented
arithmetic matroid.

Proof. Consider the elements x2, . . . , xs and y0, . . . , ys in E \ A. For all 0 ≤
i ≤ s such that χ(xi ∪ a) 6= 0 and χ(y

i
∪ a) 6= 0, the triples (xi, a, y

i) and

(yi, a, xi) are molecules. The equality

m(xi ∪ yi)2m(xi ∪ a)m(yi ∪ a) = m(xi ∪ yi ∪ a)2m(xi)m(yi)

follows from condition (3) applies to the two molecules. Notice that xi ∪ yi
does not depend on i so we can denote it by x ∪ y. We have

m(x ∪ y ∪ a)2
s∑
i=0

(−1)iχ(xi ∪ a)m(xi)χ(yi ∪ a)m(yi) =

= m(x ∪ y)2
s∑
i=0

(−1)iχ(xi ∪ a)m(xi ∪ a)χ(yi ∪ a)m(yi ∪ a).

The right side is, up to a non-zero scalar, the equation (GP) applied to
x2, . . . , xs, a1, . . . , ar−s and y0, . . . , ys, a1, . . . , ar−s for the oriented arithmetic
matroid (E,χ,m). Therefore, we have proven the claimed equality

s∑
i=0

χ(xi ∪ a)m(xi)χ(yi ∪ a)m(yi) = 0.

Contraction

The contraction of A ⊆ E is an operation defined for matroids [Oxl11, p. 22],
for oriented matroids [BLVS+99, p. 134], and for arithmetic matroids [DM13,
section 4.3] [BM14, section 3]. We now define a contraction operation for
oriented arithmetic matroids.

Let A be a subset of E and call r− s its rank. We choose an independent
list a = (a1, . . . , ar−s) of elements in A. Define χ/A : (E \A)s → {−1, 0, 1} as
χ/A(z) = χ(z ∪ a), rk /A(S) = rk(A ∪ S)− rk(A) and m/A(S) = m(A ∪ S).
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Proposition 1.2.2. The collection (E/A, rk /A,m/A, χ/A) is an oriented
arithmetic matroid.

Proof. We call T = A \ a and fix the elements x2, . . . , xs and y0, . . . , ys of
E \A. For all i such that χ(xi ∪a) 6= 0 and χ(y

i
∪a) 6= 0, the triples (a, xi, T )

and (a, yi, T ) are molecules of (E, rk). Thus

m(A)2m(xi ∪ a)m(yi ∪ a) = m(a)2m(xi ∪A)m(yi ∪A).

Since m(A) and m(a) are nonzero, then condition (GP) for x and y in the
contracted matroid is equivalent to condition (GP) for x ∪ a and y ∪ a in the
original matroid.

Duality

The duality is an operation defined for matroids [Oxl11, chapter 2], for ori-
ented matroids [BLVS+99, p. 135], and for arithmetic matroids [DM13, p. 339]
[BM14, p. 5526]. We now define duality for oriented arithmetic matroids.

Recall that the set E is ordered. For every z = (z1, . . . , zk) ⊆ E we call
z′ the complement of z in E with some arbitrary order and let σ(z, z′) be the
sign of the permutation that reorders the list (z, z′) as they appear in E. We
define χ∗ :En−r → {−1, 0, 1} as

χ∗(z) = χ(z′)σ(z, z′)

and the multiplicity function m∗ :P(E)→ N+ as m∗(z) = m(z′).

Proposition 1.2.3. The triple (E,χ∗,m∗) is an oriented arithmetic matroid.

Proof. Let x = (x2, . . . , xn−r) and y = (y0, . . . , yn−r) be two sublists of E.
Coherently with the notation above, let x′ = (x′0, . . . , x

′
r) and y′ = (y′2, . . . , y

′
r)

be their complements. For every 0 ≤ i ≤ n − r the element yi is equal to xk
or x′j . In the first case χ∗(xi) = 0 and in the second case

χ∗(xi) = χ(x′j)σ(xi, x
′j) = (−1)n−r+1+jχ(x′j)σ(x, x′).

Analogously, if yi = x′j then

χ∗(yi) = χ(y′
j
)σ(yi, y′

j
) = (−1)n−r+iχ(y′

j
)σ(y, y′)

where y′
j

= (x′j , y
′
2, . . . , y

′
r). If yi = x′j , then m∗(xi) = m(x′j) and m∗(yi) =

m(y′
j
). Thus, up to a sign, the condition (GP) for y′ and x′ in the original

matroid implies condition (GP) for x and y in the dual matroid.

18 Roberto Pagaria



1.3. GP-FUNCTIONS

1.3 GP-functions

We now study functions satisfying a relation that looks like the Plücker rela-
tion for the Grassmannian. A posteriori all these functions are nothing else
that the determinant det : V r → Q restricted to a finite (multi-)set E ⊂ V .

Definition 1.3.1. A map f :Er → Q is a GP-function if it is alternating and
for all x ∈ Er−1 and all y ∈ Er+1 the following equality holds

r∑
i=0

(−1)if(yi, x2 . . . , xr)f(y0, . . . yi−1, yi+1 . . . yr) = 0

The main examples of GP-function are the function χm for every oriented
arithmetic matroid. Another example is constructed as follow: given a map
i :E → Qr, the function x 7→ det(i(x1), . . . , i(xr)) is a GP-function. The
following theorem is a generalization of the Leibniz formula.

Theorem 1.3.2. Let f :Er → Q be a GP-function. Then for all (a1, . . . , ar)
in Er and (b1, . . . , br) ∈ Er the following formula holds:∑

σ∈Sr

(−1)sgnσ
r∏
i=1

f(a1, . . . , bσ(i), . . . , ar) = f(a1, . . . , ar)
r−1f(b1, . . . , br),

(1.2)
where bσ(i) substitutes ai.

Proof. We prove lemma by induction, the base case r = 2 is trivial. We fix
(a1, . . . , ar) ∈ Er and (b1, . . . , br) ∈ Er. Let g :Er−1 → Q be the GP-function
defined by

g(x2, . . . , xr) = f(a1, x2, . . . , xr).

By inductive step we have∑
σ∈Sr−1

(−1)sgnσ
r∏
i=2

g(a2, . . . , cσ(i), . . . , ar) = g(a2, . . . , ar)
r−2g(c2, . . . , cr).

(1.3)
The left hand side of the eq. (1.2) can be rewritten as:

r∑
j=1

f(bj , a2, . . . , ar)
∑

σ∈Sr−1

(−1)sgnσ+sgn τj

r∏
i=2

f(a1, . . . , bσ(τj(i)), . . . , ar),

(1.4)
where τj = (1, j) and Sr−1 is the subgroup of Sr of permutations that fix the
element 1. Now, for every j, we use eq. (1.3) with ci = bτj(i) to manipulate
expression (1.4):

f(a1, . . . , ar)
n−2
[
f(b1, a2, . . . , ar)f(a1, b2, . . . , br)−

r∑
j=1

f(bj , a2, . . . , ar)·

f(a1, b2, . . . , b1, . . . , br)
]
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that it is equal to left hand side of (1.2) since f is a GP-function.

Lemma 1.3.3. Let f and g be two GP-functions and B ∈ Er. Suppose that
f(B) = g(B) 6= 0 and f(C) = g(C) for all C ∈ Er such that |{i | ci 6= bi}| = 1,
then f = g.

Proof. We use Theorem 1.3.2 for the function f and g. We set {a1, . . . , ar} =
B in eq. (1.2), the left hand side for f and g are equal, so

f(a1, . . . , ar)
r−1f(b1, . . . , br) = g(a1, . . . , ar)

r−1g(b1, . . . , br).

By hypothesis f(a1, . . . , ar) = g(a1, . . . , ar) 6= 0, thus we have f(b1, . . . , br) =
g(b1, . . . , br) for all bi, i = 1, . . . , r.

1.4 Uniqueness of the orientation

Theorem 1.4.1. Let (E, rk, χ,m) and (E, rk, χ′,m) be two oriented arith-
metic matroids. Then χ′ is a re-orientation of χ.

We fix a total order on E ' [n] such that [r], the first r elements, are a
basis of the matroid.

The basis graph of a matroid is first studied in [Mau73a] and [Mau73b].

Definition 1.4.2. The basis graph BG of a matroid (E,B) is the graph on the
set B of vertices with an edge between two vertices B1 and B2 if |B1 \B2| = 1.

Once chosen a basis B0 of a matroid, we define BG1 to be the induced
subgraph of BG whose vertices are all vertices adjacent to B0. Define BG≤1

the induced subgraph whose vertices are the ones adjacent to B0 and B0 itself.

Suppose that two GP-functions χ([r]) = χ′([r]), Lemma 1.4.6 proves that,
up to reorientation, χ and χ′ coincides on all vertices of distance one from [r].
Lemma 1.4.7 proves that χ(B) = χ′(B) using Theorem 1.3.2.

Definition 1.4.3. Let G be the bipartite graph on vertices E and an edge
between i ∈ B0 and j ∈ E \B0 if B0 \ { i }∪{ j } is a basis. We call this graph
the B0-fundamental circuit graph.

Definition 1.4.4. The Line graph L(G) of a graph G = (V, E) is the graph
whose set of vertices is the set E of edges in G. The graph L(G) has an edge
between e1 and e2 ∈ E if and only if the edges e1 and e2 are incident in G.

The Line graph of G is the graph BG1. A coordinatizing path in G is a
spanning forest of the graph G. We choose a coordinatizing path P of the
graph G and its Line graph L(P ) is an induced subgraph of BG1.

The following lemma is essentially proven in [Len19, Lemma 6].
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Lemma 1.4.5. Let (E,χ,m) be an oriented arithmetic matroid with basis
graph BG, B0 be a vertex of BG and P be a coordinatizing path in G, such that
L(G) = BG1. Then there exists a re-orientation χ′ of χ such that χ′(B) =
χ′(B0) for all vertices B ∈ L(P ).

We denote the point-wise product of two function χ and m with

χm(b)
def
= χ(b) ·m(b).

We prove in our setting the equivalent of [Len19, Lemma 9].

Lemma 1.4.6. Let (E, rk,m) be an arithmetic matroid with basis graph BG,
B0 be a vertex of BG and P be a coordinatizing path in the graph G, such
that L(G) = BG1. Let χ and χ′ be two orientations of the arithmetic matroid
(E, rk,m) such that χ(B) = χ(B0) and χ′(B) = χ′(B0) for all vertices B ∈
L(P ). If χ(B0) = χ′(B0), then χ(B′) = χ′(B′) for all B′ ∈ BG≤1.

Proof. Consider the subgraph H of G with the same set of vertices and with
an edge between i ∈ B0 and j ∈ E \ B0 if and only if χ(B0 \ {i} ∪ {j}) =
χ′(B0 \ {i} ∪ {j}) 6= 0. The graph H contains the chosen coordinatizing path
P by hypothesis. Suppose that H 6= G and let T (T 6= ∅) be the set of edges of
G not contained in H. For each (i, j) ∈ T we can consider l(i, j) the length of
the minimal path in H connecting the vertices i and j. Obviously, l(i, j) is a
odd number greater than 2. Let us fix (h, k) ∈ T with l(h, k) minimal among
all l(i, j) for (i, j) ∈ T and a minimal path Q = (h = i0, j0, i1, . . . , it, jt = k)
in H between (h, k) (the equality 2t + 1 = l(h, k) holds). By minimality of
(h, k), two vertices ia and jb are connected in G if and only if a = b, a = b+ 1
or b = t and a = 0.

Without loss of generality, we suppose iv = v + 1 for 0 ≤ v ≤ t, B0 = [r],
and jv = r + v + 1 for 0 ≤ v ≤ t. Apply Theorem 1.3.2 with ai = i and
bj = t+ j + 2 to the GP-functions χm and χ′m. The product

r∏
i=1

χm(a1, . . . , bσ(i), . . . , ar)

is non zero if and only if (ai, bσ(i)) ∈ Q∪{(h, k)} for all i ≤ t+1 and bσ(i) = ai
for all t + 1 < i ≤ r. The same implication holds for the function χ′m. This
happens only for two different permutations τ and η, say that τ(h) = k and
τ(h) = j0. We define

x
def
=χm(a1, . . . , ah−1, bk, ah+1, . . . , ar),

a
def
=
∏
i 6=h

χm(a1, . . . , bτ(i), . . . , ar),

b
def
=

r∏
i=1

χm(a1, . . . , bµ(i), . . . , ar),

c
def
=χm(a1, . . . , ar)

r−1χm(b1, . . . , br).
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Thus, eq. (1.2) can be reduced to ax+ b = c. The equivalent relation for χ′ is
ax′ + b = c′ with x′ = ±x and c′ = ±c. Since a, b, c and x are non-zero, then
x = x′ and so

χ(a1, . . . , ah−1, bk, ah+1, . . . , ar) = χ′(a1, . . . , ah−1, bk, ah+1, . . . , ar).

This equality contradicts the supposition H 6= G.

Lemma 1.4.7. Let (E, rk,m) be an arithmetic matroid and χ and χ′ two
orientations of the arithmetic matroid that coincide on the elements of BG≤1.
Then χ = χ′.

Proof. By hypothesis both χm and χ′m are GP-functions, so by Lemma 1.3.3
they are equal.

Theorem 1.4.1 follows from Lemmas 1.4.5 to 1.4.7.

1.5 The strong GCD property

Definition 1.5.1. An arithmetic matroid M = (E, rk,m) satisfies the strong
GCD property if, for every subset A ⊆ E,

m(A) = gcd {m(B) | B basis and |B ∩A| = rkA } .

Strong GCD arithmetic matroids are uniquely determined by the rank
function and the multiplicity function restricted to the bases of the underly-
ing matroid. The strong GCD property is equivalent to both (E, rk,m) and
(E, rk∗,m∗) are GCD arithmetic matroids.

Lemma 1.5.2. Let M be an arithmetic matroid. If M satisfies the strong
GCD property, then it also satisfies the GCD property.

Proof. For every independent set I ⊆ E, we have that

m(I) = gcd {m(B) | B basis and I ⊆ B } .

Then, for a generic subset A ⊆ E,

m(A) = gcd {m(B) | B basis and |B ∩A| = rk(A) }
= gcd

{
gcd {m(B) | B basis and B ∩A = I } | I ⊆ A and

|I| = rk(I) = rk(A)
}

(∗)
= gcd

{
gcd {m(B) | B basis and I ⊆ B } | I ⊆ A and

|I| = rk(I) = rk(A)
}

= gcd {m(I) | I ⊆ A and |I| = rk(I) = rk(A) } .

The equality (∗) follows by |I| = rk(I) = rk(A) ≥ rk(B ∩A) = |B ∩A|.
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Lemma 1.5.3. Let M be an arithmetic matroid. If M satisfies the strong
GCD property, then its dual M∗ also satisfies the strong GCD property.

Proof. For every subset A ⊆ E, we have

m∗(Ac) = m(A) = gcd {m(B) | B basis of M and |B ∩A| = rk(A) }
(∗)
= gcd {m∗(Bc) | Bc is a basis of M∗ and |Bc ∩Ac| = rk∗(Ac) } .

The equality (∗) follows by |Bc∩Ac| = |(B∪A)c| = |E|−(|B|+|A|−|B∩A|) =
|Ac| − |B|+ |B ∩A| = |Ac| − rk(E) + rk(A) = rk∗(Ac).

Theorem 1.5.4. Let M be an arithmetic matroid. Then M satisfies the
strong GCD property if and only if both M and M∗ satisfy the GCD property.

Proof. If M satisfies the strong GCD property, then the same is true for M∗

by Lemma 1.5.3, and therefore both M and M∗ satisfy the GCD property by
Lemma 1.5.2.

Conversely, suppose that M and M∗ both satisfy the GCD property. By
the GCD property of M , for every A ⊆ E, we have

m(A) = gcd {m(I) | I ⊆ A and |I| = rk(I) = rk(A) } . (1.5)

By the GCD property for M∗, for every independent set I ⊆ E we have

m(I) = m∗(Ic) = gcd {m∗(Bc) | Bc ⊆ Ic and |Bc| = rk∗(Bc) = rk∗(Ic) }
= gcd {m(B) | I ⊆ B and |Bc| = rk∗(Bc) = rk∗(Ic) } .

The condition |Bc| = rk∗(Bc) = rk∗(Ic) can be rewritten as |Bc| = |Bc| −
rk(E) + rk(B) = |Ic| − rk(E) + rk(I). The first equality implies that rk(B) =
rk(E). By the second equality, we obtain |Bc| = |Ic|−rk(E)+|I| = |E|−rk(E),
thus |B| = rk(E). Altogether, B is a basis. Then

m(I) = gcd {m(B) | I ⊆ B and B is a basis } . (1.6)

In particular, if I ⊆ A ⊆ E and |I| = rk(I) = rk(A), then rk(I) ≤ rk(B ∩
A) ≤ rk(A) and therefore |B ∩ A| = rk(B ∩ A) = rk(A). Putting together
Equations (1.5) and (1.6), we finally obtain

m(A) = gcd {m(B) | B basis and |B ∩A| = rk(A) } .

This proves the strong GCD property for M .

Corollary 1.5.5. Let M be a surjective, torsion-free, and representable arith-
metic matroid. Then M satisfies the strong GCD property.

Proof. By [DM13, Remark 3.1], a torsion-free representable arithmetic ma-
troid has the GCD property. In particular, this applies to M . Since M is
surjective and representable, its dual M∗ = (E, rk∗,m∗) is torsion-free and
representable, and thus it also satisfies the GCD property. By Theorem 1.5.4,
we deduce that M satisfies the strong GCD property.
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Figure 1.1: An arrangement of hypersurfaces in the compact torus.

As a final remark, notice that the strong GCD property is not preserved
under deletion or contraction.

We show an example of orientable arithmetic matroid that is not repre-
sentable.

Example 1.5.6. Let ([3], rk,m) be the orientable arithmetic matroid associ-
ated with the matrix ( 1 1 2

0 n n ). Let m′ be the multiplicity function defined by
m′([3]) = 1 and m′(A) = m(A) for all A ( [3]. The triple ([3], rk,m′) is a
non-representable arithmetic matroid, since the multiplicity function does not
have the GCD property. This matroid is orientable, indeed any orientation
χ of ([3], rk,m) is an orientation of ([3], rk,m′). Figure 1.1 represents an ar-
rangement of hypersurfaces of T 2, the compact two dimensional torus, whose
pattern of intersections coincides with the arithmetic matroid ([3], rk,m′) for
n = 3.

1.6 Existence of a representation

Proposition 1.6.1. Let (E, rk,m) be an orientable arithmetic matroid. Then
the underlying matroid (E, rk) is representable over Q.

Proof. We choose an orientation χ of the arithmetic matroid (E, rk,m) and
a basis B0 = (b1, . . . , br) of the matroid. For each e ∈ E, consider in Qr the
vector

ve
def
= (χm(b1, . . . , bi−1, e, bi+1, . . . , br))1≤i≤r.

We choose a total order on E = [n] such that B0 = [r]. Let N be the
matrix that represent the vectors vi, for i = 1, . . . , n, in the canonical basis of
Qr. We claim that, for each A ⊆ [n] of cardinality r, the functions detN [A]
and χm(B0)r−1χm(A) coincide. The claimed equality holds if A = B0. If
A = {1, . . . , i− 1, i+ 1, . . . , r, j}, then

detN [A] = (−1)r−i
χm(1, . . . , i− 1, j, i+ 1, . . . , r)

χm([r])
detN [[r]]

=
χm(A)

χm(B0)
χm(B0)r = χm(B0)r−1χm(A)

(1.7)
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The GP-function χm(B0)r−1χm(·) and detN [·] coincide on BG≤1, thus
by Lemma 1.3.3 χm(B0)r−1χm(B) = detN [B] for all B ⊂ E, |B| = r. The
matroid defined by N is (E, rk) since they have the same set of basis.

Theorem 1.6.2. Let (E, rk,m) be an orientable arithmetic matroid with the
strong GCD property. Then (E, rk,m) is representable.

Proof. Consider a orientation of (E, rk,m), the vectors ve ∈ Qr for e ∈ E
defined in the proof of Proposition 1.6.1, and let Λ the lattice generated by
{ve}e∈E . Let G be a finite abelian group of cardinality m(∅) = m(E). We
claim that the elements (ve, 0) in Λ×G are a representation of the arithmetic
matroid (E, rk,m).

Let (E, rk′,m′) be the arithmetic matroid described by the elements (ve, 0)
in Λ × G. Let ΓB be the lattice generated by ve for e ∈ B. By eq. (1.7) we
have rk′ = rk and |detN [B]| = m(B0)r−1m(B) for all basis B. Therefore,

[Zr : Λ] = gcd { |detN [B]| | B basis of E } = m(B0)r−1m(E)

and

m′(B) = |G| [Z
r : ΓB]

[Zr : Λ]
= m(E)

m(B0)r−1m(B)

m(B0)r−1m(E)
= m(B).

The multiplicity functions m and m′ coincides on all basis of the matroid
(E, rk), hence by the strong GCD property m = m′.

1.7 Uniqueness of representations

We consider the representation up to an equivalence relation.

Definition 1.7.1. Two representations (he)e∈E ⊂ H and (h′e)e∈E ⊂ H ′ of
the same arithmetic matroid are equivalent if there exist a isomorphisms of
groups f :H → H ′ such that f(he) = ±h′e for all e ∈ E.

In general an arithmetic matroid has a lot of non-equivalent representa-
tions.

Example 1.7.2. Fix m ∈ N+ and consider the arithmetic matroid on the
empty set E = ∅, rk(∅) = 0 and m(∅) = m. All the representations are of the
form Zk ×H where H is finite abelian groups with |H| = m. Moreover, two
representations H and H ′ are equivalent if and only if k = k′ and H ∼= H ′.

Example 1.7.3. Fix m ∈ N+ and, for all a ∈ Z relative prime with m,

consider the pair of vectors
((

1
0

)
,
(
a
m

))
of Z2. These are representations of

an arithmetic matroid over E = { 1, 2 } with m(E) = m, two of them are
equivalent if and only if a ≡ ±a′ mod m.
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Consider an arithmetic matroid (E, rk,m) and choose a orientation χ of
the arithmetic matroid. Recall from Definition 1.1.4 the definition of a signed
circuit. For each circuit C of (E, rk) define the vector

vC =
∑
x∈C

c(x)m(C \ {x })ex ∈ QE

depending on χ, where ex is the canonical basis of QE . Let Vχ be the subspace
of QE generated by the vC for all circuit C.

Let H be an essential representation of (E, rk,m), we choose a basis of B
of HQ = H ⊗Z Q and define χ(x1, . . . , xr) = sgn(detMB(hx1 , . . . , hxr)) where
MB(hx1 , . . . , hxr) is the matrix that represents the vectors hxi ⊗ 1 in the basis
B. By an abuse of notation we denote hxi ⊗ 1 with hxi ∈ HQ.

Lemma 1.7.4. Let H be an essential representation and Vχ as above. We
have the following exact sequence

0→ Vχ → QE → HQ → 0

where the surjective map is defined by ex 7→ hx.

Proof. Since H is essential, then HQ has dimension r = rk(E) and hi, for
i ∈ E, generate HQ as vector space. For each circuit C = (x0, . . . , xs) the
vector space WC ⊂ HQ generated by {hxi }i=0,...,s has dimension s. The

function w :W s+1
C →WC defined by

(w0, . . . , ws) 7→
s∑
i=0

(−1)i det(w0, . . . , ŵi, . . . , ws)wi

is multilinear and alternating, thus is identically zero. For (w0, . . . , ws) =
(hx0 , . . . , hxs) we obtain

∑s
i=0 c(xi)m(C \ {xi })hxi = 0. Therefore, Vχ is

contained in ker(QE → HQ).
Let

∑
x∈E axex an element of ker(Qn → HQ). We prove by induction on

|{x ∈ E | ax 6= 0 }| that
∑

i∈E axex ∈ Vχ. Since
∑

x∈E axhx = 0, we have that
|{x | ax 6= 0 }| contains a circuit C = (x0, . . . , xs). The element∑

x∈E
axex −

ax0

c(x0)m(C \ {x0 })

s∑
i=0

c(xi)m(C \ {xi })exi

belongs to Vχ by inductive hypothesis and so
∑

i∈E axex ∈ Vχ. We have proven
that ker(Qn → HQ) is contained in Vχ.

The following corollary is an immediate consequence of Lemma 1.7.4

Corollary 1.7.5. Let H be a representation of an arithmetic matroid. Then
all linear relations in HQ between the vectors {he }e∈E are combination of the
following ones ∑

i∈C
c(i)m(C \ { i })hi = 0
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1.7. UNIQUENESS OF REPRESENTATIONS

Lemma 1.7.6. Let H and H ′ two essential representation of the same arith-
metic matroid, then there exist a linear isomorphism ϕQ :HQ → H ′Q such that
ϕQ(he) = ±h′e for all e ∈ E.

Proof. Let χ and χ′ be the two orientation of (E, rk,m) given by H and H ′.
By Theorem 1.4.1 there exists A ⊆ E such that χ is the reorientation of χ′

by A. Define the representation H ′′, equivalent to H ′, given by H ′′ = H ′,
h′′a = −h′a for a ∈ A and h′′e = h′e for e ∈ E \A. We prove that the assignment
he 7→ h′′e for all e ∈ E defines an isomorphism ϕQ :HQ → H ′′Q = H ′Q. This
follows from the diagram

Vχ Qn HQ

H ′′Q

ϕQ

since χ = χ′′, both HQ and H ′′Q are the cokernel of Vχ 7→ Qn. From the
above diagram also follows that ex 7→ hx and ex 7→ h′′x, thus by commutativity
hx 7→ h′′x for all x ∈ E.

Recall that an arithmetic matroid (E, rk,m) is torsion-free if m(∅) = 1
and surjective if m(E) = 1.

Theorem 1.7.7. A representable, surjective, torsion-free arithmetic matroid
has a unique representation up to equivalence.

Proof. Let H and H ′ be two essential representation of (E, rk,m), we show
that H and H ′ are equivalent. We apply Lemma 1.7.6 and obtain ϕQ :HQ →
H ′Q such that ϕQ(he) = ±h′e. Since m(∅) = 1 then H ↪→ HQ and H ′ ↪→ H ′Q.
Thus is well defined the restricted map ϕ = ϕQ|ΓE

: ΓE → Γ′E . Since m(E) = 1,

we have H = ΓE and H ′ = Γ′E .

Corollary 1.7.8. Let (E, rk,m, χ) be a representable, torsion-free, oriented
arithmetic matroid. Let {he }e∈E ⊂ H be an essential representation. Then
the linear relations among these vectors {he }e∈E are uniquely determined by
the oriented arithmetic matroid.

Example 1.7.9. Let ({1, 2, 3}, rk) be the matroid of three distinct lines in
the real plane. The function m defined by:

m(∅) = 1

m(e) = 1 for e = 1, 2, 3

m(1, 2) = 10

m(1, 3) = 15

m(2, 3) = 25

m(1, 2, 3) = 5
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CHAPTER 1. ARITHMETIC MATROIDS

defines an arithmetic matroid ([3], rk,m). This arithmetic matroid is repre-
sentable, indeed a possible representation is given by the matrix

(−2 −32 −43
1 21 29

)
.

We choose a basis of the matroid, e.g. B = {1, 2} and we consider the
matrix A ∈ M(2, 1;Q) representing the coordinates in the basis B of the third
vector

(−43
29

)
. The absolute value of the entries of A is easy to determine:

|a1,1| =
m(2, 3)

m(1, 2)
=

5

2

|a2,1| =
m(1, 3)

m(1, 2)
=

3

2

The associated matrix C is then ( 1
1 ), and the associated bipartite graph is:

r1 r2

c1

This graph has a unique maximal tree, that we call A, hence the normal form

of the matrix A (in normal form) is

(
5
2
3
2

)
. A representation of the arithmetic

matroid in normal form is given by
(

2 −32 −43
−1 21 29

)
which is obtained from the

one we had before by changing the sign of the first column.

1.8 Reduction of quasi-arithmetic matroids

In this section we introduce a new operation on quasi-arithmetic matroids,
which we call reduction. We will use this construction in the algorithm that
computes the representations of a torsion-free arithmetic matroid.

Definition 1.8.1 (Reduction). Let M = (E, rk,m) be a quasi-arithmetic
matroid. Its reduction is the quasi-arithmetic matroid M = (E, rk,m) on the
same groundset, with the same rank function, and with multiplicity function
m is given by

m(X) =
gcd {m(B) | B is a basis, and rk(X) = |X ∩B| }

gcd {m(B) | B is a basis }
.

Given a matroid M = (E, rk) and two subsets X,Y ⊆ E, define

B(X,Y ) = {(B1, B2) | B1 and B2 are bases of M, rk(X) = |X ∩B1|,
and rk(Y ) = |Y ∩B2|}.
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1.8. REDUCTION OF QUASI-ARITHMETIC MATROIDS

Lemma 1.8.2. Let M = (E, rk) be a matroid, let (X,F, T ) be a molecule
and set Y = X t T t F as in Definition 1.1.5. Then there is a bijection
ϕ : B(X,Y ) → B(XtT,XtF ) given by

ϕ(B1, B2) =
(
(B1 \X) ∪ (B2 ∩ (X ∪ T )), (B2 \ (X ∪ T )) ∪ (B1 ∩X)

)
.

Proof. Notice that F ⊆ B2, because rk(Y ) = rk(Y ∩ B2) = rk(X) + |B2 ∩ F |
(the first equality is by definition of B(X,Y ), and the second equality is by
definition of molecule).

We want to prove that B3 = (B1 \ X) ∪ (B2 ∩ (X ∪ T )) is a basis. The
set B1 \ X is independent, and its rank (or cardinality) is equal to |B1| −
|X ∩ B1| = rk(E) − rk(X) by definition of B(X,Y ). The set B2 ∩ (X ∪ T )
is also independent, and (since F ⊆ B2) its rank (or cardinality) is equal to
|B2∩Y |−|F | = rk(X)+ |F |−|F | = rk(X). Therefore |B3| ≤ rk(E). Applying
property (2) of the rank function to the pair (B3, X ∪ T ), we obtain

rk(B3) + rk(X ∪ T ) ≥ rk(B3 ∪X ∪ T ) + rk(B3 ∩ (X ∪ T )).

Notice that rk(X ∪ T ) = rk(X) (by definition of molecule), B1 ⊆ B3 ∪X ∪ T ,
and B2 ∩ (X ∪ T ) ⊆ B3 ∩ (X ∪ T ). Then

rk(B3) + rk(X) ≥ rk(B1) + rk(B2 ∩ (X ∪ T )) = rk(E) + rk(X).

Therefore rk(B3) ≥ rk(E), and B3 is a basis.
We want now to check that |B3∩(X∪T )| = rk(X∪T ). We have B1∩T = ∅,

because

rk(X) + |T ∩B1| = |X ∩B1|+ |T ∩B1| = |(X ∩B1) t (T ∩B1)|
= |(X ∪ T ) ∩B1| = rk((X ∪ T ) ∩B1)

≤ rk(X ∪ T ) = rk(X).

Thus B3 ∩ (X ∪ T ) = B2 ∩ (X ∪ T ), and this set has cardinality rk(X) =
rk(X ∪ T ).

Similarly, B4 = (B2 \ (X ∪ T ))∪ (B1 ∩X) is a basis, and B4 ∩ (X ∪ F )| =
rk(X ∪ F ). Therefore the map ϕ is well-defined.

The map ψ : B(XtT,XtF ) → B(X,Y ) defined by

ψ(B3, B4) =
(
(B3 \ (X ∪ T )) ∪ (B4 ∩X), (B4 \X) ∪ (B3 ∩ (X ∪ T ))

)
can be verified to be the inverse of ϕ. Therefore ϕ is a bijection.

Lemma 1.8.3. Let M = (E, rk,m) be a quasi-arithmetic matroid, consider
a molecule (X,F, T ) and set Y = X t T t F as in Definition 1.1.5. If
ϕ : B(X,Y ) → B(XtT,XtF ) is the bijection of Lemma 1.8.2, and (B3, B4) =
ϕ(B1, B2), then

m(B1)m(B2) = m(B3)m(B4).
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Proof. Consider the following four molecules:

(B1 ∩X, (B2 ∩ (X ∪ T )) ∪B1);

(B2 ∩ (X ∪ T ), (B1 ∩X) ∪B2);

(B2 ∩ (X ∪ T ), (B2 ∩ (X ∪ T )) ∪B1);

(B1 ∩X, (B1 ∩X) ∪B2).

Applying axiom (A2) to these molecules, we get the following relations (we
use the fact that B1 ∩ T = ∅, shown in the proof of Lemma 1.8.2):

m(B1 ∩X)m((B2 ∩ (X ∪ T )) ∪B1) = m((B1 ∪B2) ∩ (X ∪ T ))m(B1);
(1.8)

m(B2 ∩ (X ∪ T ))m((B1 ∩X) ∪B2) = m((B1 ∪B2) ∩ (X ∪ T ))m(B2);
(1.9)

m(B2 ∩ (X ∪ T ))m((B2 ∩ (X ∪ T )) ∪B1) = m((B1 ∪B2) ∩ (X ∪ T ))m(B3);
(1.10)

m(B1 ∩X)m((B1 ∩X) ∪B2) = m((B1 ∪B2) ∩ (X ∪ T ))m(B4). (1.11)

Let k = m((B1 ∪ B2) ∩ (X ∪ T )). Multiplying the previous equations in
pairs, we obtain k2m(B1)m(B2) = k2m(B3)m(B4), hence m(B1)m(B2) =
m(B3)m(B4).

Theorem 1.8.4. The reduction M of a quasi-arithmetic matroid (E, rk,m)
is a torsion-free surjective quasi-arithmetic matroid, and satisfies the strong
GCD property.

Proof. Let d = gcd {m(B) | B is a basis }. We start by checking axiom (A1)
of Definition 1.1.6. Consider a subset X ⊆ E and an element e ∈ E.

• If rk(X ∪ {e}) = rk(X), then a basis B such that rk(X) = rk(X ∩ B)
also satisfies rk(X ∪{e}) = rk((X ∪{e})∩B). Therefore d ·m(X ∪{e}) |
d ·m(X).

• Similarly, if rk(X ∪ {e}) = rk(X) + 1, then a basis B such that rk(X ∪
{e}) = rk((X ∪ {e}) ∩ B) also satisfies rk(X) = rk(X ∩ B). Therefore
d ·m(X) | d ·m(X ∪ {e}).

We now check axiom (A2). Let (X,Y ) be a molecule, with Y = X tT tF
as in Definition 1.1.5. By definition of m, we have that

d2m(X)m(Y ) = gcd {m(B1)m(B2) | (B1, B2) ∈ B(X,Y ) } .

Similarly,

d2m(X ∪ T )m(X ∪ F ) = gcd {m(B3)m(B4) | (B3, B4) ∈ B(X∪T,X∪F ) } .
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1.8. REDUCTION OF QUASI-ARITHMETIC MATROIDS

By Lemmas 1.8.2 and 1.8.3, we obtain d2m(X)m(Y ) = d2m(X∪T )m(X∪F ),
hence m(X)m(Y ) = m(X ∪ T )m(X ∪ F ).

Therefore M is a quasi-arithmetic matroid. By definition of m, we also
have that m(∅) = m(E) = 1, i.e. M is torsion-free and surjective. It is also
immediate to check that M satisfies the strong GCD property.

It is not true in general that the reduction of an arithmetic matroid is an
arithmetic matroid. We see this in the following example.

Example 1.8.5. Let M = (E, rk) be the uniform matroid of rank 2 on the
groundset E = {1, 2, . . . , 6}. Consider the multiplicity function m :P(E) →
N+ defined as

m(∅) = 1,

m({1}) = m({2}) = 2,

m({j}) = 1 if j > 2,

m({X}) = 1 if |X ∩ {3, . . . , 6}| ≥ 2,

m({i, j}) = 2 if i = 1, 2 and j > 2,

m({1, 2}) = 4,

m({1, 2, 3}) = 1,

m({1, 2, j}) = 2 if j > 3.

Then M = (E, rk,m) is an arithmetic matroid (this can be checked using
the software library [PP19a]). We have that m(X) = m(X) for every X ⊆ E,
except that m(1, 2, 3) = 2. The quasi-matroid M = (E, rk,m) does not satisfy
axiom (P) for the molecule ({1, 2}, E).

However, the reduction of a representable arithmetic matroid turns out to
be a representable arithmetic matroid.

Theorem 1.8.6. If M = (E, rk,m) is a representable arithmetic matroid,
then its reduction M is also a representable arithmetic matroid.

Proof. Let (ve)e∈E ⊆ G be a representation of M . Denote by K the quotient
of G by its torsion subgroup T . Let G be the sublattice of K generated by
{ v̄e | e ∈ E }, where v̄e is the class of ve in K. We are going to show that
(v̄e)e∈E ⊆ G is a representation of M .

Let M ′ = (E, rk,m′) be the arithmetic matroid associated with the rep-
resentation (v̄e)e∈E ⊆ G. By construction, M ′ is representable, torsion-free
(because G is torsion-free), and surjective (because the vectors v̄e generate
G). Therefore, by Corollary 1.5.5, it satisfies the strong GCD property. As a
consequence,

gcd {m′(B) | B basis } = m(E) = 1.
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Let B be a basis of M . Since B is independent, we have that T ∩〈vb〉b∈B =
{0}. Then,

m(B) =
∣∣∣G�〈vb〉b∈B∣∣∣ = |T | ·

∣∣∣K�〈v̄b〉b∈B∣∣∣ = |T | ·
∣∣∣K�G∣∣∣ ·

∣∣∣∣G�〈v̄b〉b∈B
∣∣∣∣

= |T | ·
∣∣∣K�G∣∣∣ ·m′(B).

If B varies among all bases of M , taking the gcd of both sides we get

gcd {m(B) | B basis } = |T | ·
∣∣∣K�G∣∣∣ .

Therefore

m′(B) =
m(B)

gcd {m(B) | B basis }
= m(B).

Since both M ′ and M satisfy the strong GCD property, m′(X) = m(X) for
every subset X ⊆ E. This means that M = M ′ is representable.

Finally, notice that the reduction does not commute with deletion and
contraction. However, it commutes with taking the dual.

1.9 Classification of representations

The aim of this section is to classify all representations up to equivalence of a
representable torsion-free arithmetic matroid (typically non-surjective).

Let (E, rk,m) be a realizable torsion-free arithmetic matroid and (E, rk,m)
be its reduction. The triple (E, rk,m) is a representable arithmetic matroid
by Theorem 1.8.6 and let {he }e∈E in Γ be a representation of (E, rk,m). By
Theorem 1.7.7, this representation is unique.

Each representation {h′e }e∈E in Λ of (E, rk,m) induces the representation
{h′e }e∈E in ΓE ⊂ Λ of (E, rk,m). By uniqueness we identify ΓE with Γ and
h′e with sehe for some se ∈ { 1,−1 }. The representation { seh′e }e∈E in Λ
is equivalent to {h′e }e∈E in Λ and it identifies the elements seh

′
e with the

given one he. Therefore, each representation of (E, rk,m) is determined, up
to equivalence, by a suitable extension of lattices Γ ⊃ Λ.

Let f : Λ → Λ′ be an equivalence of representation, it restricts to a map
f : Γ→ Γ. Is not true that f(he) = he, as shown in the following example.

Example 1.9.1. For a,m coprime integers consider, as in Example 1.7.3, the
arithmetic matroid ([2], rk,m), where rk(A) = |A|, m([2]) = m and m(A) = 1
for all A ( E. The representation described by the matrix ( 1 a

0 m ) is equivalent
to the one described by the matrix

(
1 −a
0 m

)
. However, since the associated

matroid ([2], rk,m) has no circuits, the two orientations are the same. The
morphism f :Z2 → Z2 defined by

(−1 0
0 1

)
sends h1 7→ −h′1 and h2 7→ h′2.
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Lemma 1.9.2. Let f : Λ → Λ′ be an equivalence of representation as above.
If i, j ∈ E are contained in a circuit, then there exists s ∈ { 1,−1 } such that
f(hi) = sh′i and f(hj) = sh′j.

Proof. There exists I ⊂ E such that I t { i } and I t { j } are basis of the
matroid. Let si, sj ∈ { 1,−1 } such that f(hi) = sih

′
i and f(hj) = sjh

′
j and

B be a basis of Λ⊗Z Q. Notice that f(B) is a basis of Λ′ ⊗Z Q and therefore
MB({ha ⊗ 1 }a∈A) = Mf(B)({ f(ha)⊗ 1 }a∈A) for any A ∈ Er. We have

χ(I ∪ { i })χ(I ∪ { j }) = sisjχ(I ∪ { i })χ(I ∪ { j }),

hence si = sj as claimed.

Definition 1.9.3. Let (E, rk) be a matroid, we define S = S(E, rk) as the
subgroup of ZE2 of elements s such that s(i) = s(j) if there exists a circuit
containing both i and j.

We regard S as the subgroup of GL(n;Z) of diagonal matrices with entries
equal to ±1. The representation {he }e∈E of (E, rk,m) induces a surjective
morphism p :ZE → Γ. By Lemma 1.7.4, the kernel of p is contained in Vχ
where χ is the orientation induced by {he }e∈E . Since, by definition, the
elements s ∈ S preserves ker p, we regard S as a subgroup of Aut(Γ) '
GL(r;Z).

Remark 1.9.4. The cardinality of S is equal to the number of irreducible
component of the matroid (E, rk).

Remark 1.9.5. The matroid (E, rk,m) determines the isomorphism class of
the group G = Λ/Γ. In fact G is the cokernel of the matrix N(A) whose
columns are the coordinate of χe in some basis. Then by the Smith normal
form, its isomorphism class depends only on the greatest common divisor of
the determinants of the minors of N(A). The group G can be presented as
the cokernel of D, where D is the r×r diagonal matrix with entries di = ei

ei−1
,

where ei = gcd {m(E) | |E| = i }.

A standard fact from commutative algebra is the correspondence between
the group Ext1(G,F ) and the extension of the two Z-modules F and G:

0→ F → X → G→ 0 (1.12)

up to equivalence, i.e. two extensions X and X ′ are equivalent if there exists
the following commutative diagram:

0 F X G 0

0 F X ′ G 0
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Moreover every subgroup of Aut(G) or of Aut(F )op acts on Ext1(G;F ) by
functoriality.

We are interested mainly in the case of the extension

0→ Γ→ Λ→ G→ 0

that corresponds to an element x ∈ Ext1(G,Γ). We will show that an equiv-
alent representation Γ′ will give another element x′ that differs form x by
the action of S × Aut(G). Moreover, we will characterize all elements in
Ext1(G,Γ)/(S × Aut(G)) that arise from representations of (E, rk,m). Now
we want to characterize the cardinality of the torsion subgroup |TorX| for
X as in Equation (1.12). Suppose that F is free, then the torsion subgroup
TorX is isomorphic to its image in G.

Lemma 1.9.6. Let F be a free Z-module. Then the contravariant functor
Ext1(·, F ) from finite abelian groups to Z-modules is an exact functor.

Proof. A short exact sequence of finite abelian groups 0→ H
i−→ G

p−→ K → 0
produces a short exact sequence

0→ Ext1(K,F )
p∗−→ Ext1(G,F )

i∗−→ Ext1(H,F )→ 0

since Hom(H,F ) = 0 and Ext2(K,F ) = 0 for all free Z-module F and all
finite group H.

Lemma 1.9.7. Let F be a free Z-module, G a finite abelian group and x an
element of Ext1(G,F ). Then:

1. There exists a unique subgroup H ↪→ G, maximal among all subgroups
H ′ such that i∗H′(x) = 0.

2. There exists a unique quotient G� K, minimal among all quotients K ′

such that x ∈ Im p∗K′.

Moreover, such groups form an exact sequence 0→ H → G→ K → 0.

Proof. Suppose that, for two subgroups H and H ′ of G, i∗H(x) = 0 and
i∗H′(x) = 0. There is a surjection H ×H ′ � HH ′ < G that gives an inclusion
Ext1(HH ′, F ) ↪→ Ext1(H,F ) × Ext1(H ′, F ). The element i∗HH′(x) maps to
(0, 0) so it must be zero (i∗HH′(x) = 0 in Ext1(HH ′, F )). The arbitrariness of
H and H ′ gives the first result.

The second point follows from the first making use of the following fact:
for every exact sequence 0→ H ′ → G→ K ′ → 0 the element i∗H′(x) is zero if
and only if x ∈ Im p∗K′ .
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We make the following construction: for A ⊆ E, define ΓA to be the
subgroup of Γ generated by {he }e∈A and RadΓ(ΓA) its radical in the lattice
Γ. Let FA be the quotient of Γ by RadΓ(ΓA) and notice that FA is a free Z-
module. The exact sequence 0 → RadΓ(ΓA) → Γ → FA → 0 of free modules
gives, for any finite abelian group G the exact sequence:

0→ Ext1(G,RadΓ(ΓA))→ Ext1(G,Γ)
πA−−→ Ext1(G,FA)→ 0. (1.13)

Definition 1.9.8. Consider x ∈ Ext1(G,Γ) and call HA(x) the maximal
subgroup H of G given by Lemma 1.9.7 for the elements πA(x) ∈ Ext1(G,FA).
An element x ∈ Ext1(G,Γ) is said coherent with (E, rk,m) if for all A ⊆ E
we have m(A)|HA(x)| = m(A). Call C the subset of Ext1(G,Γ) made by all
coherent elements quotient by the action of S ×Aut(G).

Theorem 1.9.9. Let (E, rk,m) be a representable torsion-free arithmetic ma-
troid. The set C parametrizes all the representation up to equivalence.

Proof. Let [x] ∈ C be a element such that x is coherent with (E, rk,m); x gives
an extension 0 → Γ → Λx → G → 0. If S ⊆ E then there is a commutative
diagram:

0 Γ Λx G 0

0 FA Λx�RadΓ ΓA
G 0

Call ΛA the quotient Λx/RadΓ ΓA; we will show that the group HA(x) is
the torsion subgroup of ΛA. The exact sequence 0 → FA → ΛA → G → 0
is represented by the element πA(x) (see eq. (1.13)). Therefore for all G′

subgroup of G, iG′(πA(x)) is zero if and only if the upper short exact sequence
of the following diagram splits.

0 FA X G′ 0

0 FA ΛA G 0

The upper short exact sequence splits if and only if X is included in the
subgroup FA × Tor ΛA of ΛA. Indeed, if the upper sequence splits then FA ×
G′ ' X ⊆ ΛA and G′ is a torsion group, hence included in Tor ΛA. Viceversa,
if X ⊆ FA×Tor ΛA then the projection onto the first factor gives a retraction
of FA ↪→ X and so the sequence splits.

Hence, the maximal subgroup HA(x) is isomorphic to the torsion subgroup
of ΛA, that is, RadΛx ΓA/RadΓ ΓA. The obvious equality:∣∣∣RadΛx ΓA�RadΓ ΓA

∣∣∣ · ∣∣∣RadΓ ΓA�ΓA

∣∣∣ =
∣∣∣RadΛx ΓA�ΓA

∣∣∣ (1.14)
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implies the equality |HA(x)|m(A) = mx(A), where mx is the multiplicity
induced by the inclusion Γ ↪→ Λx. Since x is a coherent element, we obtain
the equality mx = m. A different choice of x, say fxs, gives an equivalent
representation since the five lemma applied to the following diagram

0 Γ Λx G 0

0 Γ Λfxs G 0

s ψ f

proves that ψ : Λx → Λfxs is an isomorphism. Moreover, for each e ∈ E we
have that ψ(he) = s(e)he, thus the two representations are equivalent.

The surjectivity of the correspondence follows by taking a representation
Λ of (E, rk,m). Indeed, the inclusion Γ = ΓE → Λ has cokernel isomorphic to
G by Remark 1.9.5. Thus Λ is represented by a element x(Λ) of Ext1(G,Γ).
This element is coherent by eq. (1.14).

Let x, y ∈ Ext1(G,F ) be two coherent element and suppose that Λx and
Λy are equivalent. Then by Lemma 1.9.2 we can find s′ ∈ S such that the
equivalence ψ′ : Λxs′ → Λy induces the identity map on Γ. So, ψ′ induces
an automorphism f ′ of G and therefore the extensions Λf ′xs′ and Λy are
equivalent and then y = f ′xs′. This completes the proof.

Corollary 1.9.10. For any centred toric arrangement, the data of the arith-
metic matroid (E, rk,m) together with [x] ∈ C are a complete invariant system
for the arrangement up to automorphisms of the torus.

Example 1.9.11. We continue Example 1.7.9 of the arithmetic matroid
([3], rk,m). The group G is isomorphic to Z5. The multiplicity function m is
defined by:

m(∅) = 1

m(e) = 1 for e = 1, 2, 3

m(1, 2) = 2

m(1, 3) = 3

m(2, 3) = 5

m(1, 2, 3) = 1

The unique representation of ([3], rk,m) is described by Γ = Z2 and by the
elements: (

h1 h2 h3

)
=

(
1 1 4
0 2 3

)
.

The relation 5h1 +3h2−2h3 = 0 holds and the group Ext1(G,Γ) is isomorphic
to Z2

5. We look for the elements x ∈ Ext1(G,Γ) which are coherent with the
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arithmetic matroid. Notice that the subgroups of G are only 0 and G (this is
not true in general) and imposing the coherence conditions for x yields:

|H∅(x)| = m(∅)
mU (∅)

= 1⇔ H∅(x) = 0⇔ x 6= 0 ∈ Ext1(G,Γ)

|Hi(x)| = m(i)

mU (i)
= 1⇔ Hi(x) = 0⇔ πi(x) 6= 0

The last implication holds for i = 1, 2, 3. By choosing the basis v1, v2 of Γ,
we identify x ∈ Ext1(G,Γ) ' Z2

5 with pairs (a, b) such that a, b ∈ Z5. By
standard commutative algebra Λx = coker((a, b, 5) :Z→ Γ⊕ Z).

The conditions become, respectively:

π1(x) = b 6= 0 π2(x) = 2a− b 6= 0 π3(x) = 3a− 4b 6= 0

For the remaining subsets A ⊂ [3], which are all of rank two, we have that
RadΓ ΓA coincides with the whole lattice Γ. In particular πA(x) = 0 and
HA(x) = G, therefore these coherence conditions are always satisfied.

The group S ' Z2 acts by changing sign of a and b and the group Aut(G) '
Z∗5 acts by multiplication. Summing all up, the coherent elements are

C = { (a, b) | b, 2a− b 6= 0 }�S × Z∗5,

notice that the conditions 2a− b 6= 0 and 3a− 4b 6= 0 are equivalent and the
set C coincides with { a ∈ Z5 | a 6= 3 } (take a representative with b = 1).

We are going to built a representation of the arithmetic matroid for each
element of C, such that any two of them are non-isomorphic. The group Λx
is identified with the lattice in Q2 generated by e1, e2, w = 1

5(ae1 + e2) (recall
that x = (a, 1)). A basis for Λx is given by { e1, w } and the three elements
h1, h2, h3 have the following coordinates:

Ca =

(
1 1− 2a 4− 3a
0 10 15

)
These are all the representations of the initial arithmetic matroid, up to equiv-
alence.

Indeed, the initial representation is equivalent to C1:

(
−2 −32 −43
1 21 29

)
=

(
2 −3
−1 2

)(
1 −1 1
0 10 15

) −1
1

1


Example 1.9.12. We continue with Example 1.7.3 of the arithmetic matroid
([2], rk,m). Let e1, e2 ∈ Z2 = Γ be the unique representation of the arithmetic
matroid ([2], rk,m). All representations of (E, rk,m) are parametrize by the
coherent elements in Ext1(Zm,Γ) ' Z2

m. We denote its elements by pairs
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(a, b) and they are coherent if and only if gcd(a,m) = gcd(b,m) = 1. The
group S is isomorphic to Z2

2 and acts on Ext1(Zm,Γ) by changing the sign of
the corresponding coordinates.

Therefore, the set C is { (a, b) | gcd(a,m) = gcd(b,m) = 1 } /Z2
2 × Z∗m and

it can be identify with

C = { a ∈ [1,
m

2
] | gcd(a,m) = 1 } ,

by taking the representative with b = 1. The representations are given by the
classes e1, e2 in Λx = coker((a, 1,m) :Z→ Γ× Z), i.e. by the matrices

Ca =

(
1 a
0 m

)
.
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Chapter 2

Cohomology

Sections 2.4, 2.5 and 2.11 are revised version of the corresponding section of
[Pag19b], the rest of this Chapter is the article [CDD+18], a joint work with
Callegaro, D’Adderio, Delucchi and Migliorini.

2.1 Introduction

The topology of the complement of an arrangement of hyperplanes in a com-
plex vector space is a classical subject, whose study received considerable
momentum form early work of Arnold and Brieskorn (e.g., [Arn69, Bri73])
motivated by applications to the theory of braid groups and of configuration
spaces. A distinguishing trait of this research field is the deep interplay be-
tween the topological and geometric data and the arrangement’s combinatorial
data, here usually understood to be the arrangement’s matroid, a combina-
torial abstraction of the linear dependencies among the hyperplanes’ defining
forms. A milestone in this direction is the presentation of the complement’s
integral cohomology algebra given by Orlik and Solomon [OS80], building on
work of Arnold and Brieskorn. As we will explain below, this presentation is
fully determined by the combinatorial (matroid) data and thus such an algebra
can be associated with any matroid. Over the years, Orlik-Solomon algebras
of general matroids have attracted interest in their own right [Yuz01].

In the wake of De Concini, Procesi and Vergne’s work on the connection
between partition functions and splines [DPV10] came a renewed interest in
the study of complements of arrangements of subtori in the complex torus
– a class of spaces which had already been considered by Looijenga in the
context of moduli spaces [Loo93]. Following [DP05] we call such objects toric
arrangements. Below we will briefly outline the state of the art on the topology
of toric arrangements. This research direction was spurred particularly by the
seminal work of De Concini and Procesi [DP05] which foreshadowed as rich
an interplay between topology and combinatorics as is the case for hyperplane
arrangements.
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A crucial aspect that emerged in [DP05] and was confirmed by subsequent
research in the topology of toric arrangements is that the matroid data nat-
urally associated with every toric arrangement is not fine enough to encode
meaningful geometric and topological invariants of the arrangement’s comple-
ment. The quest for a suitable enrichment of matroid theory has been pursued
from different points of view, i.e., by modeling the algebraic-arithmetic struc-
ture of the set of characters defining the arrangement [DM13, BM14, FM16]
or by studying the properties of the pattern of intersections [DR18].

In this chapter we provide an Orlik-Solomon type presentation for the
cohomology algebra of an arbitrary toric arrangement, generalizing De Concini
and Procesi’s work on the unimodular case. Our presentation with rational
coefficients is fully determined by the intersection pattern. This presentation
holds also for the integral cohomology algebra, but, in this case, it is not
determined by the intersection pattern. In order to be able to state our results
we provide some background.

Arrangements of hyperplanes and Orlik-Solomon Algebras

A (central) hyperplane arrangement is a finite set A = {Hλ}λ∈E of codimen-
sion one linear subspaces in a complex vector space V ' Cn. The space
M(A) := V \ ∪A is in a natural way an affine complex variety, hence its
cohomology (over C) is computed by the algebraic de Rham complex, as the
quotient of the group of closed algebraic forms modulo that of exact algebraic
ones (by Grothendieck’s algebraic de Rham theorem [Gro66]).

We choose vectors {aλ}λ∈E ⊂ V ∗ such that Hλ = ker aλ and consider the
free exterior algebra ΛA over Z generated by the symbols {eλ}λ∈E . In ΛA we
define an ideal as follows: for every subset A := { aλ1 , · · · , aλr } ⊂ { aλ }λ∈E
of linearly dependent vectors, we set

∂eA :=

r∑
i=1

(−1)i−1eλ1 · · · êλi · · · eλr (2.1)

and let JA be the ideal generated by the ∂eA’s, where A runs over all linearly
dependent subsets of E.

The quotient algebra ΛA/JA is called the Orlik-Solomon algebra of the
arrangement. The theorem of Orlik and Solomon states that the map ΛA →
H∗ (M(A),Z) sending eλ to the differential form 1

2πi dlog aλ factors to an al-
gebra isomorphism

ΛA�JA
'−→ H∗

(
M(A),Z

)
.

Two consequences of this fact are:

1. H∗ (M(A),Z) is generated in degree one;

2. the integral ring structure depends only on the structure of the family
of linearly dependent subsets of { aλ }λ∈E .
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Definition 2.1.1. Recall the fixed total ordering of E. A broken circuit of
E is any subset of the form C \ {minC } where C is a circuit, i.e. a minimal
dependent set.

A no-broken-circuit set (or nbc-set) is any subset of E that does not contain
any broken circuit. The collection of all nbc sets is denoted nbc(A) (or nbc(M)
if we want to stress the dependency from the matroid).

Remark 2.1.2. Every nbc-set is necessarily independent.

Theorem 2.1.3 (Orlik-Solomon [OS80]). Let A be a central hyperplane ar-
rangement, there is a an isomorphism:

ΛE�JE
'−→ H•(M(A);Z)

Moreover a basis of ΛE/JE as Z-module is given by the elements eS :=∏
λ∈S eλ where S is a no broken circuit.

As we have explained more precisely in Section 1.1.1, the combinatorial
data of the family of linearly dependent subsets of E is encoded in the ar-
rangement’s matroid. Thus, item (2) above can be rephrased by saying that
the integral ring structure depends only on the matroid or equivalently, using
a basic fact in matroid theory, that it depends only on the partially ordered
set

S(A) := {∩B | B ⊆ A} (2.2)

of all intersections of hyperplanes, ordered by reverse inclusion [OT92, 2.1].
The construction of ΛE/JE can be formally carried out for every abstract

matroid, hence with every matroid is associated an Orlik-Solomon algebra,
and this class of algebras enjoys a rich structure theory (see [Yuz01] for a
survey). For instance, the matroid’s Whitney numbers of the first kind count
the dimensions of the algebra’s graded pieces (hence, in the case of arrange-
ments, the Betti numbers of the complement), and generating functions for
these numbers can be obtained from classical polynomial invariants of ma-
troids (e.g. the Tutte polynomial).

Toric arrangements

A toric arrangement is a finite set A of codimension one subtori in a complex
torus T ' (C∗)n. The topological object of interest is, again, the complement
M(A) := T \ ∪A. Each such subtorus can be defined as a coset of the kernel
of some character of T . The arrangement is called central if every subtorus is
the kernel of a certain character. If we fix one such defining character for every
subtorus in A we can consider the matroid of linear dependencies among the
resulting set of characters (e.g., viewed as a family of elements of the vector
space obtained by tensoring the lattice of characters by Q). This matroid does
not depend on the choice of the characters.
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Even to encode basic topological data such as the Betti numbers of the
arrangement’s complement, this “algebraic” matroid data must be refined, for
instance by some “arithmetic” data given by the multiplicity function which
keeps track of the index of sublattices spanned by subsets of the characters.
This approach goes back to Lawrence [Law11]. An axiomatization of some
crucial properties of this function is the foundation of the theory of arith-
metic matroids [DM13, BM14]. By [DP05] and via Moci’s arithmetic Tutte
polynomial [Moc12a], the Betti numbers of the complement of a central toric
arrangement can be computed from the associated arithmetic matroid.

Since intersections of subtori can be topologically disconnected, the “ge-
ometric” intersection data of a toric arrangement is customarily taken to be
the poset of layers, i.e., connected components of intersections (see Defini-
tion 2.2.5). The significance of this poset was already pointed out by Za-
slavsky [Zas77]. The paper [DR18] introduces group actions on semimatroids
as an attempt for a unified axiomatization of posets of layers and multiplicity
functions.

The line of research leading to the present work starts with [DP05] where
a general result about the Betti numbers of the complement was obtained
(see Theorem 2.2.16). Combinatorial models for the homotopy type of com-
plements of toric arrangements were studied in [MS11, dD12], and minimal-
ity of such spaces was proved in [dD15]. Inspired by the seminal paper
[DP95, MP98], De Concini and Gaiffi recently computed the cohomology of
certain compactifications of M(A) [DG18b, DG18a], see also [Moc12b] for
related earlier work.

Associated graded of the rational cohomology of M(A) were developed by
Bibby [Bib16a] and Dupont [Dup16a], and the minimality result of [dD15] im-
plies torsion-freeness of the integral cohomology. Dupont also proved rational
formality of M(A) in [Dup16b]. Further related work includes results about
representation stability [Bib16b] and local system cohomology [DSY17].

Presentations of the graded rational algebra were discussed in [Bib16a].

The integral cohomology algebra was considered in [CD17] using purely
combinatorial methods, but we point out that the formulas for the multipli-
cation given there contain a mistake (see [CD19]). Here we take a different
point of view. In particular, we obtain a presentation for the cohomology ring
H∗(M(A),C) that can be seen as generalizing the one obtained for hyper-
planes by Orlik-Solomon. In the unimodular case, i.e. when all the intersec-
tions of hypertori are connected, we recover the presentation that had been
obtained in [DP05].

Results

In this chapter we provide Orlik-Solomon type presentations for the integral
cohomology algebra of a general toric arrangement and we study its properties.
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More precisely,

• We present the graded integral cohomology as the second page of the
Leray spectral sequence for the inclusion of the complement in the ambi-
ent torus, see Theorem 2.4.3. This result generalize [Bib16a] and recovers
the one of [CD17] by using different methods.

• We give a more combinatorial presentation of the cohomology algebra
with rational coefficients (Corollary 2.5.4). This algebra depends only
on the poset of layers, see Remark 2.5.2.

• We generalize De Concini and Procesi’s presentation beyond the uni-
modular case, to all toric arrangements (Theorem 2.9.13). In the general
case this algebra is not necessarily generated in degree one, and every
minimal linear dependency among characters induces a number of rela-
tions equal to the number of connected components of the intersection of
the involved characters (the case where every such dependency induces
one relation is precisely the unimodular one studied by De Concini and
Procesi).

The data needed for the presentation of the rational cohomology is fully
encoded in the poset of layers (Remark 2.9.15). Moreover, Theorem 3.5.2
shows that the cohomology ring structure cannot be recovered from the
associated arithmetic matroid.

• We prove that the forms we choose as generators of the cohomology
are integral. The relations involved in our presentation hold as relation
of forms, not only of cohomology classes. Thereby we extend Dupont’s
result of rational formality to integral formality, and we obtain an Orlik-
Solomon type presentation for the integral cohomology algebra as well
(Theorem 2.10.4). Moreover, Theorem 3.4.2 shows that the integral
cohomology algebra of the complement of a toric arrangement is not
determined by the poset of layers.

• We give combinatorial criteria that determines whether the cohomology
algebra is generated in degree one: see Theorem 2.11.5 for the case of ra-
tional coefficients and Theorem 2.11.6 for the case of integer coefficients.
These criteria depend only on the poset of layers, see Remark 2.11.3.

Plan

The plan of the chapter is as follows: first, in Section 2.2 we recall a few
definitions related to the topology and combinatorics of toric arrangements,
and we reduce the study of all toric arrangements to the one of primitive
arrangements in a connected torus. We study in Section 2.3 the Leray spec-
tral sequence of the inclusion of the complement in the ambient torus. The
spectral sequence for the constant sheaf with integer values collapses at the
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second page and converges to a gradation of the cohomology ring of the toric
arrangement. In Section 2.4 we construct a bigraded algebra A(A) isomorphic
to the graded cohomology with integer coefficients. In Section 2.5 we give a
completely combinatorial presentation of an algebra B(A) isomorphic to the
graded cohomology ring with rational coefficients. In Section 2.6 we introduce
our choice of logarithmic forms associated with the arrangement’s elements.
Starting from De Concini and Procesi’s work, we deduce some formal identi-
ties associated with minimal dependencies among the arrangement’s defining
characters. The technical tool towards treating the non-unimodular case are
certain coverings of toric arrangements introduced in Section 2.7. Then, in
Section 2.8 we put this tool to work and single out a special class of coverings
(which we call “separating covers”). These coverings allow us to define some
fundamental forms accounting for the single contributions in cohomology as-
sociated with different components of the same intersection. In Section 2.9
we prove that these forms generate the cohomology algebra and the relations
generate the whole relation ideal. In Section 2.10 we extend our results to
integral homology. Finally in Section 2.11, we give a purely combinatorial
criteria to determine whether the cohomology ring (with rational or integer
coefficients) is generated in degree one.

2.2 Basic definitions and notations

Generalities

Throughout, E will denote a finite set. For indexing purposes, we will fix an
arbitrary total ordering < of E (e.g., by identifying it with a subset of N).
We will also follow these conventions: we will consider every subset of E to
be ordered with the induced ordering. For A,B ⊆ E, we will write (A,B) for
the concatenation of the two totally ordered sets, i.e. if A = { ai < · · · < al }
and B = { bi < · · · < bh }, then (A,B) = (a1, a2, . . . , al, b1, . . . , bh), which is
typically different from A ∪B.

Definition 2.2.1. Given A,B ⊆ E such that A ∩ B = ∅, let `(A,B) denote
the length of the permutation that takes (A,B) into A ∪B.

Definition 2.2.2. An element χ in an abelian group Λ is primitive if χ /∈ nΛ
for all integer n > 1.

Notice that the neutral element is never primitive.

Toric arrangements

Let T = (C∗)d×K be a complex torus (where K is a finite abelian group), and
let Λ = Hom(T,C∗) be the group of characters of T . Consider a list χ ∈ ΛE
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of elements of Λ ' H1(T,Z) and a tuple b ∈ (C∗)E . The toric arrangement
defined by χ and b is

A = {Hi | i ∈ E},

where Hi = χ−1
i (bi) is the level set of χi at level bi, for all i ∈ E.

The toric arrangement is called central if b = (1, . . . , 1), i.e., if Hi is the
kernel of χi for all i ∈ E.

Definition 2.2.3. We define M(A) ⊂ T to be the complement of the toric
arrangement A, i.e.

M(A) := T \
⋃
H∈A

H.

Definition 2.2.4. The toric arrangement A is called unimodular if ∩i∈AHi

is either connected or empty for all A ⊆ E.

Definition 2.2.5. For a given arrangement A in a torus T we define the
poset of layers S(A) as the set of all connected components of nonempty
intersections of elements of A ordered by reverse inclusion. The elements of
S(A) are called layers of the arrangement A.

Notice that the torus T is an element of S(A) since it is the intersection
of the empty family of hypertori.

Definition 2.2.6. The toric arrangement A is called essential if the maximal
elements in S(A) are points.

Reduction to connected tori

Since the study of a nice topological space can be reduced to the study of
each connected component, we can assume the torus T to be connected in the
following way.

Notice that each connected component is of the type (C∗)d×{ k } for some
k ∈ K and that the decomposition T = (C∗)d × K is canonical. Therefore,
each character χ can be written as (χ1, χ2) ∈ Hom((C∗)d,C∗)×Hom(K,C∗).
Thus the hypertorus H = χ−1(b), with b ∈ C∗, intersected with the connected
component (C∗)r × { k } is the set H(k) = { t1 ∈ (C∗)d | χ1(t1) = bχ2(k)−1 }.
It is an hypertorus in (C∗)d×{ k } if χ1 6= 0, is empty if χ1 = 0 and χ2(k) 6= b,
and H(k) = (C∗)d × { k } otherwise. Given a toric arrangement A = (χ, b) in

(C∗)d×K, we consider only the connected component (C∗)d×{ k } such that
all Hi(K) are different from the torus (C∗)d × { k } and, for such k, we define
the arrangement Ak = (χ

1
, bχ

2
(k)−1). The complement M(A) =

⊔
kM(Ak)

is a disjoint union of complement of toric arrangements in connected tori and
we have H•(M(A);Z) =

∏
kH

•(M(Ak);Z).
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Example 2.2.7. Consider the torus C∗ × (Z2)2, a generic element is (t, k, h)
for t ∈ C∗ and k, h ∈ { 0, 1 }. Let A be the arrangement described by the
following two equations

t−2(−1)k = ζ5, (−1)k(−1)h = −1,

where ζ5 is a primitive 5th root of unity. The first describing character is
primitive. The sets H2(0, 0) and H2(1, 1) are empty, H2(0, 1) = C∗ × { 0 } ×
{ 1 }, and H2(1, 0) = C∗ × { 1 } × { 0 }. The arrangement A0,1 consists of
one non-connected hypertorus { t | t−2 = ζ5 } and A1,0 has one non-connected
hypertorus described by χ(t) = t−2 and b = −ζ5.

Now on we suppose all tori to be connected, hence the character group Λ
will be a lattice isomorphic to Zd.
Remark 2.2.8. Once an isomorphism of Λ with Zd is fixed, for every subset
A ⊆ E we can associate the integer d× |A| - matrix N [A] whose columns are
the characters in A, say in the fixed ordering of E.

Reduction to primitive and essential arrangement

If A is not essential, all maximal layers in S(A) are translates of the same
torus subgroup W of T . This follows from the classical theory of hyperplane
arrangements by applying [OT92, Lemma 5.30] to the lifting of A in the
universal covering of T . By choosing any direct summand T ′ of W in T
we can decompose the ambient torus as T = W × T ′. Hence, if we call
A′ = {H ∩ T ′ | H ∈ A} the arrangement induced by A in T ′, we have that A′
is essential and M(A′) = M(A)/W . Moreover M(A) = W ×M(A′).

If an hypertorus is described by a non-primitive character χ = nζ for ζ
primitive, then the n connected components of χ−1(b) are equal to ζ−1(c) for
all c ∈ C∗ such that cn = b. Thus, each toric arrangement A can be described
using only connected hypertori of codimension one.

Now on we assume that all toric arrangements are essential and described
by primitive characters, i.e. all hypertori are connected.

Let A = (χe, be)e∈E be a toric arrangement, we call ΓE (or Γ if there is no
ambiguity) the subgroup of Λ generated by all characters χe, for e ∈ E. The
hypothesis that A is essential implies the equality rk Γ = rk Λ = r.

Tangent space

Definition 2.2.9. Given a toric arrangement A in T and a point p ∈ T we
define the linear arrangement A[p] in the tangent space Tp(T ) as the arrange-
ment given by the hyperplanes Tp(H) for all H ∈ A such that p ∈ H (see
[OT92] for background on hyperplane arrangements).

For a given layer W of A, a point p ∈W is generic if for any H ∈ A such
that W 6⊆ H we have that p /∈ H. We define the linear arrangement A[W ] as
the hyperplane arrangement A[p] for a generic point p ∈W .
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H1

H2 H0

p q r

Figure 2.1: A picture of the arrangement B.

Remark 2.2.10. Notice that the arrangement A[W ] does not depend on the
choice of the generic point p.

Example 2.2.11. Let x, y be the coordinates on the 2-dimensional torus T .
We consider the arrangement B in T = (C∗)2 given by the following hypertori:

H0 := {x3y = 1 } ;

H1 := { y = 1 } ;

H2 := {x = 1 } .

Notice that H1 and H2 as well as H2 and H0 intersect in a single point p =

(1, 1), while H1 and H0 intersect in three points: p, q = (e
2πi
3 , 1), r = (e

4πi
3 , 1).

We can identify the group of characters Λ with Z2 generated by χ1 = (0, 1),
χ2 = (1, 0). Hence y = eχ1 , x = eχ2 and the hypertorus H0 is associated with
the character χ0 = χ1 + 3χ2.

The intersection of B with the compact torus is represented in Exam-
ple 2.2.11. Along this chapter we will use this arrangement as a running
example for the definitions and results that we introduce.

We identify the tangent space Tp(T ) with C2, with coordinates x̄, ȳ. The
local arrangement B[p] is given by the hyperplanes with equations 3x̄+ ȳ = 0,
ȳ = 0, x̄ = 0, while the local arrangement B[q] has equations 3x̄ + ȳ = 0,
ȳ = 0.

Arithmetic matroids

There is additional enumerative data to be garnered from the set of characters
{χe }e∈E , when this is viewed as a subset of the lattice Λ. In particular, to
every subset A ⊆ E we can associate its span ΓA := 〈A〉 ⊆ Λ and a lattice
RadΛ ΓA = (Q⊗Z ΛA) ∩ Λ.

The function

rk:P(E)→ N, A 7→ rkZ ΓA

associates to every subset A ⊆ E the rank of ΓA as Z-module. The function

m :P(E)→ N, A 7→ [RadΛ ΓA : ΓA]
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that associates to every subset A of E the cardinality of the torsion subgroup
of the quotient Λ/ΓA is the multiplicity function associated with the repre-
sentation {χe}e∈E ⊂ Λ.

Remark 2.2.12.

(a) If A is a toric arrangement, then for all A ⊆ E the integer m(A) is the
number of connected components of the intersection

⋂
e∈AHe when this

intersection is non-empty (cf. [Moc12a, Lemma 5.4]).

(b) Unimodularity of the list E is equivalent to m being constant equal to
1, and is equivalent to unimodularity of the arrangement A.

(c) Given a matrix representation as in Remark 2.2.8, the number m(A)
equals the product of the elementary divisors of N [A], i.e., the greatest
common divisor of all its minors with size equal to the rank of N [A] (cf.
[Sta91, Theorem 2.2]). If N [A] is a non-singular square matrix, then
m(A) = |detN [A]|.

It follows that the characters χe ∈ Λ for e ∈ E are a representation of
the arithmetic matroid (E, rkA,mA). We recall an important result of the
previous chapter:

Corollary 2.2.13 (Corollary 1.7.5). If C is a circuit, then the following re-
lation holds: ∑

i∈C
cim(C \ {i})χi = 0 (2.3)

where ci ∈ { 1,−1 } are introduced in Definition 1.1.4 and depends only on the
oriented arithmetic matroid.

Remark 2.2.14. If the arrangement is unimodular, from Corollary 2.2.13 we
garner that every circuit can be realized by a minimal linear dependency all
whose coefficients are integer units.

Theorem 2.2.15 ([DP05, Theorem 4.2]). For each integer k ≥ 0 we have a
(noncanonical) decomposition, as W runs over S(A)

Hk(M(A)) =
⊕

W∈S(A)

Hk−rkW (W )⊗HrkW (M(A[W ])).

The following Theorem is essentially proved in [Loo93, subsection 2.4.3]
and in [DP05, Remark 4.3]. The combinatorial version is stated in [Moc12a,
Corollary 5.12]
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Theorem 2.2.16. If A is any toric arrangement in a torus T of dimension
r, the Poincaré polynomial of the complement M(A) is given in terms of the
nbc-sets and the multiplicity function as

Poin(M(A), t) =
r∑
j=0

Nj(t+ 1)r−jtj ,

where, for j = 0, . . . , r,

Nj :=
∑
L∈Sj

| nbcj(A[L])|,

and nbcj(A[L]) is the set of no-broken-circuits of cardinality j in the arrange-
ment A[L]. In particular, the j-th Betti number of M(A) is

βj(M(A)) =

j∑
i=0

Ni

(
r − i
j − i

)
.

Remark 2.2.17.

(a) The data given by the matroid M together with the function m deter-
mines an arithmetic matroid. We refer to [DM13] for a general abstract
definition of an arithmetic matroid, and some of its properties.

(b) The poset S(A) determines the arithmetic matroid data. In fact, for
any given set A ⊆ E we can consider the set X of minimal upper-
bounds in S(A): A is independent if and only if the poset-rank of the
elements of X equals |A|, and the multiplicity of A equals |X| (via
Remark 2.2.12). On the other hand in Section 3.5 we will explicitly
construct two toric arrangements with isomorphic arithmetic matroid
data but non-isomorphic posets of layers.

Example 2.2.18. In the arrangement B introduced in Example 2.2.11 the
only minimal dependent set of characters is C = {χ0, χ1, χ2}, hence this is the
only circuit in the associated matroid. The relation −χ0 +χ1 +3χ2 = 0 holds.
The arithmetic matroid associated with B has set E = {χ0, χ1, χ2} ⊂ Λ = Z2

and the multiplicity function is given by

m({χ0, χ1}) = 3,

while m(A) = 1 for all other subsets of E. In particular notice that B is a
central, not unimodular arrangement. The Poincaré polynomial of M(A) is

Poin(M(B), t) = 1 + 5t+ 8t2. (2.4)
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2.3 The Leray spectral sequence

In this section we state some general results on the Leray spectral sequence, see
[Bre97] for a reference. The case of cohomology with rational coefficients has
been studied by Bibby in [Bib16a]. We make use a result appeared for the first
time in [Loo93] to compute the cohomology with integer coefficients of a toric
arrangement. Using the Leray spectral sequence we obtain a nice presentation
of a canonical bigradation of cohomology algebra of toric arrangements.

Let j : M ↪→ T be the natural inclusion, which is a continuous map between
topological spaces. Let ZM be the sheaf on M of locally constant functions
with values in Z.

We recall the definition of higher direct image sheaves for the map j and
the sheaf ZM . Let us consider the presheaf defined by U 7→ Ȟq(j−1(U);ZM ).
The associated sheaf is the q-direct image sheaf Rqj∗ZM .

Since Z is a ring, the cup product Ȟq(j−1(U);ZM )⊗ Ȟq′(j−1(U);ZM )→
Ȟq+q′(j−1(U);ZM ) is defined in Čech cohomology, for details see [Bre97, Sec-
tion II.7]. The cup product induces the map of sheaves fq,q′ :R

qj∗ZM ⊗
Rq
′
j∗ZM → Rq+q

′
j∗ZM . In the same way we can define Rqj∗QM . We de-

fine the maps

^: Ȟp(T ;Rqj∗ZM )⊗ Ȟp′(T ;Rq
′
j∗ZM )→ Ȟp+p′(T ;Rq+q

′
j∗ZM ) (2.5)

as (−1)p
′q times the composition of the cup product in the Čech cohomology

and fq,q′ .
The inclusion j defines a natural map in cohomology H•(T ) → H•(M)

which is injective, so we identify H•(T ) with its image. We define a increasing
filtration F• = {Fi}i∈Z for the cohomology ring H•(M) by

Fi = Im(H≤i(M ;Z)⊗H•(T ;Z)
∪−→ H•(M ;Z))

for i ≥ 0 and by F−1 = 0. The graded ring grF• H
•(M ;Z) associated with the

filtration F• is the ring
⊕

i≥0 Fi /Fi−1.

Lemma 2.3.1 ([Bre97]). There exists a spectral sequence of Z-algebras which
converges, as a bigraded algebra, to grF• H

•(M ;Z). The second page of the
spectral sequence is

Ep,q2 (M) = Ȟp(T ;Rqj∗ZM )

and the product coincides with the map defined in (2.5).

Proof. The existence and the convergence of the spectral sequence are proven
in [Bre97, IV, Theorem 6.1]. The cup product in Leray spectral sequence is
described in [Bre97, IV, section 6.8].

The limit of the spectral sequence is a graded ring associated with a fil-
tration of H•(M ;Z) that can be determine as follows. The Leray spectral
sequence can be identified to the first (or horizontal) spectral sequence of an
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appropriate double complex. The filtration in the double complex is described
in [Bre97, A, section 2] and coincides with F•.

The Brieskorn inclusion is a natural map on the cohomology of hyperplane
arrangements defined as follows. Fix a layer L of rank k in a hyperplane
arrangement A with poset of intersection S and let AL be the arrangement
given by hyperplanes containing L. The Brieskorn inclusion is the composition

bL :Hk(M(AL);Z) ↪→
⊕
W∈Sk

Hk(M(AW );Z)
∼−→ Hk(M(A);Z),

where the second map is the Brieskorn isomorphism (see [OT92, Theorem
3.26, p. 65] or [Bri73, Lemma 3, p.27]).

From now on, let j :M → T be the open inclusion of complement of a
toric arrangement in the corresponding torus, so the equality j∗ZM = ZT
holds. The higher direct image sheaves Rqj∗ZM and Rqj∗QM has been par-
tially described in [Loo93] and in [Bib16a], respectively. The analogous of the
following lemma for the sheaf Rqj∗QM has been proven in [Bib16a, Lemma
3.1]. We adapt the proof of [Bib16a] in order to study the cup product struc-
ture in the case of integer coefficients.

Lemma 2.3.2. Let iW be the inclusion W ↪→ T for W ∈ S. For all natural
numbers q there exists an isomorphism of sheaves:

ϕq :
⊕

rkW=q

(iW )∗ZW ⊗Z Hq(M(A[W ]);Z)
∼−→ Rqj∗ZM

Proof. Recall that the sheaf Rqj∗ZM is the sheafification of the presheaf P ,
defined by:

P (U)
def
= Ȟq(j−1(U);ZM ) = Hq(U ∩M ;Z).

We define the sheaves εW = (iW )∗ZW ⊗Z HrkW (M(A[W ]);Z) for all W ∈ S.
Let U ⊂ T be an open set, we have

εW (U) = H0(U ∩W ;Z)⊗Z HrkW (M(A[W ]);Z).

For all x ∈ T we choose a neighbourhood basis of open sets U such that U ∩M
is isomorphic to a small neighbourhood of the origin in M(A[x]). By definition
A[x] = A[Wx] where Wx is the minimal layer containing x. We call this basis
of the topology U . Define the morphism of sheaves ϕW : εW → Rqj∗ZM such
that for each open U ∈ U is

ϕW (U) :H0(U ∩W ;Z)⊗Z Hq(M(A[Wx]);Z)→ Hq(U ∩M ;Z)

the pullback of the inclusion U ∩M ↪→ M(A[Wx]) composed with the cup
product. Let ϕq be the direct sum map from εq := ⊕rkW=qεW into Rqj∗ZM .
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We show that ϕq is the desired isomorphism by checking on the stalks.
The stalk of Rqj∗ZW at x is

(Rqj∗ZM )x = Hq(M(A[Wx]);Z),

and for x ∈ T the map

(ϕq)x : (εq)x =
⊕

rkW=q
W3x

Hq(M(A[W ]);Z)→ Hq(M(A[Wx]);Z)

is the Brieskorn isomorphism, therefore ϕq is an isomorphism.

In order to study the product map fq,q′ , we introduce the map

bW,W ′,L : εW ⊗ εW ′ → εL

which is defined as follows: if L is a connected component of W ∩W ′ of rank
rkL = rkW + rkW ′ we set:

bW,W ′,L((α⊗ a)⊗ (γ ⊗ c)) = (α|Lγ|L)⊗ (bW,L(a) ∪ bW ′,L(c))

where bW,L is the Brieskorn inclusion:

HrkW (M(A[W ]);Z) ' HrkW (M(A[L]W );Z) ↪→ HrkW (M(A[L]);Z).

Otherwise we define bW,W ′,L to be zero. Now we can consider the direct sum
map

bq,q′ =
⊕

rkW=q
rkW ′=q′

rkL=q+q′

bW,W ′,L : εq ⊗ εq′ → εq+q′ .

Lemma 2.3.3. The isomorphism ϕ of Lemma 2.3.2 is compatible with fq,q′

and bq,q′, i.e. the diagram below commutes.

Rqj∗ZM ⊗Z Rq
′
j∗ZM Rq+q

′
j∗ZM

εq ⊗ εq′ εq+q′

fq,q′

ϕq ⊗ ϕ′q ϕq+q′

bq,q′

Proof. It is sufficient to show that fq,q′ ◦ϕq ⊗ϕq′ and ϕq+q′ ◦ bq,q′ agree on all
stalks. Let x be a point in T and α⊗ a and γ⊗ c be elements of (εW )x and of
(εW ′)x, respectively. Let L be the connected component of W ∩W ′ containing
x and Wx be the minimal layer containing x. From the fact that

bL,Wx ◦ (bW,L(a) ∪ bW ′,L(c)) = bW,Wx(a) ∪ bW ′,Wx(c)

we have that both stalks are αγbW,Wx(a) ∪ bW ′,Wx(c).
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The next Theorem appeared first in [CD17]. An analogue on the rationals
was proven in [Bib16a, Lemma 3.2] in a more general setting using some Hodge
theory.

Theorem 2.3.4 ([CD17, Theorem 5.1.3]). The Leray spectral sequence asso-
ciated with the inclusion M ↪→ T degenerates at the second page. Hence the
two algebras E

•,•
2 (M) and grF• H

•(M ;Z) are isomorphic.

Up to changing the coefficients, the filtration F• coincides with the one
defined in [DP05, Remark 4.3]. From now on, we denote by grH•(M ;Z)
the bigraded, graded commutative, Z-algebra associated with H•(M ;Z) with
respect to the filtration {F•n }n∈Z.

2.4 Graded cohomology with integer coefficients

Let A = (χe, be)e∈E be a toric arrangement in T . We define the following
algebra.

Definition 2.4.1. Let Ap,q(A) be the vector space

Ap,q(A)
def
=

⊕
W∈Sq(A)

Hp(W ;Z)⊗Z Hq(M(A[W ];Z).

The graded vector space A•,•(A) =
⊕

p,q Ap,q(A) is endowed of the following
product. Let α⊗a and γ⊗c two element in Hp(W ;Z)⊗ZHq(M(A[W ];Z) and
in Hp′(W ′;Z)⊗ZHq′(M(A[W ′];Z), respectively. If rkW+rkW ′ 6= rkW ∩W ′,
then (α⊗ a) · (γ ⊗ c) = 0. Otherwise, set

(α⊗ a) · (γ ⊗ c) = (−1)p
′q

∑
L∈π0(W∩W ′)

(i∗W,Lα ∪ i∗W ′,Lγ)⊗ (bW,L(a) ∪ bW ′,L(b)),

where iW,L is the inclusion L ↪→ W and bW,L is the Brieskorn inclusion
Hq(M(A[L]W ) ↪→ Hq(M [L]).

Theorem 2.4.2. The second page of the Leray spectral sequence defined in
Lemma 2.3.1 is isomorphic as a bigraded algebra to A(A).

Proof. The isomorphism ϕq : εq → Rqj∗ZM of Lemma 2.3.2 induces an isomor-
phism in cohomology:

ϕ̃q :
⊕

rkW=q

H•(W ;Z)⊗Z Hq(M(A[W ]);Z)→ E
•,q
2 (M)

Hence we have an isomorphism ϕ̃ : A•,•(A) → E
•,•
2 (M); Lemma 2.3.3 ensures

then that ϕ̃ is an isomorphism of algebras.

As a consequence of the previous statements we obtain the following result.
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Theorem 2.4.3. For any toric arrangement A, there exists an isomorphism
of bigraded Z-algebras:

f : A•,•(A)→ grFH
•(M(A);Z)

Proof. The result follows since the map f is the composition the isomorphism
given in Theorem 2.4.2 between A•,•(A) and E

•,•
2 (M) and the isomorphism of

Theorem 2.3.4.

2.5 Graded cohomology with rational coefficients

In this section we give a purely combinatorial presentation of the bigraded
algebra grFH

•(M(A);Q). We begin by defining the ring B(A), then we exhibit
a basis of this Q-vector space and finally we show an isomorphism between
the objects B(A) and grFH

•(M(A);Q).

Definition 2.5.1. Let ∧[fW,A;B] be the exterior algebra on generators fW,A;B

where AtB is an independent set and W a connected component of
⋂
e∈AHe;

the bi-degree of the generator fW,A is (|B|, |A|). The algebra B(A) is the
quotient of quotient of ∧[fW,A;B] by the following types of relations:

• For any two generators fW,A;B, fW ′,A′;B′ ,

fW,A;BfW ′,A′;B′ = 0

if A,A′, B,B′ are not pairwise disjoint or if AtBtA′tB′ is a dependent
set, and otherwise

fW,A;BfW ′,A′;B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

fL,A∪A′;B∪B′ . (2.6)

• For every circuit C ⊆ E a relation∑
i∈E

cim(C \ { i })fT,∅;{ i } = 0, (2.7)

where ci are defined in Definition 1.1.4 (see also Corollary 2.2.13).

• For every circuit C ⊆ E a relation∑
i∈C

(−1)ifW,C\{ i };∅ = 0. (2.8)

Remark 2.5.2. The presentation of the algebra B(A) depends on the choice of
an orientation χ of the arithmetic matroid (E, rkA,mA). However, the algebra
B(A) depends only on the poset of layers S(A).
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Let ω be a generator of H1(C∗;Z), ψi := χ∗i (ω), and ψB be the product∏
i∈B ψi.

Theorem 2.5.3. The assignment

fW,A;B 7→ (−1)`(B,A)ψB ⊗ eA ∈ H |B|(W )⊗H |A|(M(A[W ]))

induces an isomorphism g :B(A)→ A(A)⊗Z Q.

As consequence we obtain:

Corollary 2.5.4. The map

f ◦ g : B(A)→ grFH
•(M(A);Q)

is an isomorphism.

We recall the definitions from [DP05].

Definition 2.5.5. A set A ⊆ E is a associated with W ∈ S(A) if W is a
connected component of

⋂
i∈C Hi.

Let W ∈ S(A) be a layer and consider the subgroup ΓW < Λ given by all
characters that vanish on W . Since A is essential, we choose dimW characters
in our arrangement such that they form a basis of Λ/ΓW ⊗Z Q. Let CW ⊂ E
be the indexing set of these chosen characters. Notice that |CW | = dimW .

Lemma 2.5.6. Let A be an essential toric arrangement. Then a set of gen-
erators of B(A) as Q-vector space is given by the elements fW,S;T with S no
broken circuit associated with W and T a subset of CW .

Proof. It is sufficient to show that any generic element fW,A;B can be written
as linear combination of the ones fW,S;R with S no broken circuit associated
with W and R a subset of CW . By relation eq.(2.8) we can write each fW,A;B

as sum of certain fW,S;B with S a no broken circuit associated with W . Since
fW,S;B = (−1)`(S,B)fW,S;∅fT,∅;B, by relations eq: (2.7) fT,∅;B can be written as
linear combination of some fT,∅;R with R ⊆ CW or R∩S 6= ∅. In the first case

(−1)`(S,B)fW,S;∅fT,∅;R = fW,S;R that is an element in our set of generators.
In the case R ∩ S 6= ∅, the relations eq. (2.6) show that fW,S;∅fT,∅;R = 0 in
B(A).

Lemma 2.5.7. The map g : B(A) → A(A) ⊗Z Q of Theorem 2.5.3 is well
defined.

Proof. We need to show that relations 2.6-2.8 hold in A(A)⊗Z Q.
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• for each pair of generators fW,A;B, fW ′,A′;B′ we have

g(fW,A;BfW ′,A′;B′) = (−1)`(B,A)+`(B′,A′)(ψB ⊗ eA)(ψB′ ⊗ eA′).

If A tA′ is dependent than both side are zero, otherwise,

g(fW,A;BfW ′,A′;B′) = (−1)l
∑

L∈π0(W∩W ′)

ψBψB′ ⊗ eAeA′ ,

where l = `(B,A) + `(B′, A′) + |A||B′|. Now ψBψB′ 6= 0 in H(L;Z) if
and only if A tB tA′ tB′ is a dependent set, otherwise

g(fW,A;BfW ′,A′;B′) = (−1)l+k
∑

L∈π0(W∩W ′)

g(fL,A∪A′;B∪B′),

where k = `(B ∪B′, A∪A′) + `(B,B′) + `(A,A′). Since both `(B,A) +
`(B′, A′) + `(B ∪ A,B′ ∪ A′) and |A||B′| + `(B,B′) + `(A,A′) + `(B ∪
B′, A ∪A′) are the sign of the permutation that reorders (B,A,B′, A′),
we conclude that k + l ≡ l(A ∪B,A′ ∪B′) mod 2.

• The equation
∑

i∈E cim(C \ { i })ψi = 0 holds by Corollary 2.2.13 and
by the isomorphism H1(T ;Z) ' Λ.

• The last relation holds because for each circuit C associated with W the
equation

∑
i∈C(−1)ieC\{ i } holds in H(M(A[W ];Z) (see eq. (2.1)).

Proof of Theorem 2.5.3. The map g is surjective because H•(W ;Z) ⊗Z Q is
generated in degree one by the elements ψi with i ∈ CW . Notice that this fact
is false without tensoring by Q in the case W = T and A a non-surjective
arrangement.

Using Theorem 2.4.3 and lemma 2.5.6, the dimension of B(A) is at most∑
W∈S

2dimW |nbcrkW (A[W ])|.

This number is equal to dimQ A(A)⊗Z Q, since by Theorem 2.2.16 we have

dimQ A(A)⊗Z Q = Poin(M(A), 1) =
∑
W∈S

2dimW |nbcrkW (A[W ])|.

This completes the proof.

Example 2.5.8. Consider the toric arrangement B of Example 2.2.11. The
layers of rank two are 3 points:

p = (1, 1) = H0 ∩H1 ∩H2

q = (1, ζ3) ⊂ H0 ∩H1

r = (1, ζ2
3 ) ⊂ H0 ∩H1
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An additive basis for the cohomology algebra of the complement is formed by

e1, e2, y0, y1, y2

in degree one and by

e12, e1y0, e1y1, e2y2, yp,01, yp,02, yq,01, yr,01

in degree two. Notice that this agree with eq. (2.4).

2.6 Some formal identities

In this section we derive some identities among the forms associated with a
circuit C ⊆ E. For ease of notation we identify E as a subset of N with
the natural order, and we suppose that C = { 0, 1, . . . , k }. Then the char-
acters χ0, . . . , χk exhibit a linear dependency, and we examine different cases
according to the signs of the coefficients of this linear dependency.

The results of this section will be enough in order to treat the unimodular
case, where (see Remark 2.2.14) such coefficients must be units.

Logarithmic forms

We will study presentations of the cohomology algebra that use, as generators,
a distinguished set of logarithmic forms.

We call
√
−1 by i.

Definition 2.6.1. For all i ∈ E we set

ωi :=
1

2πi
dlog(1− eχi), and ψi :=

1

2πi
dlog(eχi). (2.9)

For symmetry reasons, we also define the forms

ωi :=
1

2πi
d log(1− eχi) +

1

2πi
d log(1− e−χi) = 2ωi − ψi. (2.10)

Given any A = {a1 < . . . < al} ⊆ E we write

ψA := ψa1 ∧ . . . ∧ ψal .

and

ωA := ωa1 ∧ . . . ∧ ωal , resp. ωA := ωa1 ∧ . . . ∧ ωal .

Now, if C = {χ0, . . . , χk } ⊆ E is a circuit of a unimodular arrangement,
and we assume that

χ0 =
k∑
i=1

χ1,

Cohomology and Combinatorics of Toric Arrangements 57



CHAPTER 2. COHOMOLOGY

De Concini-Procesi in [DP05, p. 410, eq. (20)] (see also Remark 2.6.2 below)
prove the formal relation

∂ωC =
∑

minC∈A⊆C,
B(A)6=∅

(−1)ε(A)ωAψB(A) (2.11)

where the fixed total ordering on E is understood,

i(A) := max(C \A),

B(A) := (C \A) \ i(A),

ε(A) := |A|+ `(A,C \A),

and `(A,C \ A) is the length of the permutation reordering A,C \ A (see
Definition 2.2.1).

Remark 2.6.2. Notice that in [DP11, eq. (15.3)] (and also in [DP05, eq. (20)])
there is a misprint concerning the sign: writing [k] for {1, . . . , k}, the correct
equation is

ω[k] =
∑
I([k]

(−1)|I|+k+1+`(I,[k]\I)ωIψB(I∪{0})ω0. (2.12)

To go from [DP11, eq. (15.3)] to our (2.11) it is enough to use the boundary
relation

∂ωC = ω[k] +
∑

0∈A⊆C,
|A|=k

(−1)ε(A)ωA.

Example 2.6.3. Consider the unimodular arrangement B′ in T = (C∗)2 given
by the hypertori H1, H2, H0, where H0 = {xy = 1}. The relation χ0 = χ1 +χ2

holds and the forms associated with B′ are

ω0 =
1

2πi
dlog(1− xy), ω1 =

1

2πi
dlog(1− y), ω2 =

1

2πi
dlog(1− x),

ψ0 =
1

2πi
dlog(xy), ψ1 =

1

2πi
dlog(y), ψ2 =

1

2πi
dlog(x).

The set C = {χ0, χ1, χ2} is the only circuit and relation (2.11) gives

ω0ω1 − ω0ω2 + ω1ω2 = ω0ψ1

as can be checked directly. In the following we will use the arrangement B′ as
a running example of a unimodular arrangement.

Lemma 2.6.4. If χ0 =
∑k

i=1 χi, we have the following identity.

ω1 · · ·ωk = ω0

k∏
i=2

(ωi − ωi−1 + ψi−1) (2.13)
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Proof. We fix j ∈ {1, . . . , k}. Consider the non-zero products in the expansion
of (2.13) that do not contain either the factor ωj nor the factor ψj . In each
one of these terms, all the factors ωi for i > j have to appear. Instead, due
to the fact that ωi ∧ ψi = 0, exactly one of the two terms ωi and ψi has to
appear for i < j . So the sum of the products not containing ωj or ψj will be

ω0

∏
1≤i<j

(−ωi + ψi)
∏
i>j

ωi.

Hence we have,

ω0

k∏
i=2

(ωi − ωi−1 + ψi−1) =
k∑
j=1

ω0

∏
1≤i<j

(−ωi + ψi)
∏
i>j

ωi =

=

k∑
j=1

∑
0∈A(C,
i(A)=j

(−1)|A≤j |−1ηA

where

ηA = η0 · · · η̂i(A) · · · ηk

and

ηi :=

{
ωi if i ∈ A
ψi otherwise.

We conclude the purely formal identity

ω0

k∏
i=2

(ωi − ωi−1 + ψi−1) =
∑

0∈A(C
(−1)|A≤i(A)|−1ηA. (2.14)

Now we use our assumption
∑k

i=1 χi = χ0. It entails that the form ϑ(0)

defined before Proposition 15.6 in [DP11] equals ω0. In particular, again in
the notation of [DP11], for I ⊂ [k] we have

Φ
(0)
I

def
= (−1)`(I,[k]\I)

∏
i∈I

ωi
∏

j∈B(I∪{0})

ψjϑ
(0) = (−1)i(I)−1ηI∪{0}

noticing that the products ηI∪{0} already follow the standard ordering. We
can now use [DP11, eq. (15.3)], i.e.,∑

I([k]

(−1)|I|+k+1Φ
(0)
I = ω1 · · ·ωk

in order to rewrite Equation (2.14). If we take A = I ∪ {0}, since k − i(A) =
|A| − |A≤i(A)|, we obtain the claimed equality.
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Lemma 2.6.5. If
∑k

i=0 χi = 0, then we have

k∏
i=1

(ωi − ωi−1 + ψi−1) = 0 (2.15)

or, using the forms ωi defined in eq. (2.10),

k∏
i=1

(ωi + ψi − ωi−1 + ψi−1) = 0. (2.16)

Proof. We start by a formal identity which can be readily verified, e.g., by
induction on k.

ω1 · · ·ωk = ω1

k∏
i=2

(ωi − ωi−1 + ψi−1)

We can now expand the left-hand side using Lemma 2.6.4 applied to the
identity (−χ0) =

∑
i>0 χi. Collecting terms we obtain

0 =

(
ω1 −

1

2πi
d log(1− e−χ0)

) k∏
i=2

(ωi − ωi−1 + ψi−1).

Noticing that 1
2πi d log(1− e−χ0) = ω0 − ψ0 we conclude:

(ω1 − ω0 + ψ0)
k∏
i=2

(ωi − ωi−1 + ψi−1) = 0.

For the second equation we can immediately compute

2(ωi − ωi−1 + ψi−1) = ωi + ψi − ωi−1 + ψi−1,

so multiplying formula (2.15) by 2k we get the claimed identity.

Example 2.6.6. We continue with the arrangement introduced in Example
2.6.3. Since the relation

χ0 = χ1 + χ2

holds, from Lemma 2.6.4 we have ω1ω2 = ω0(ω2−ω1 +ψ1). In order to apply
Lemma 2.6.5 we set χ′0 := −χ0 (and hence ω′0 = ω0 − ψ0 and ψ′0 = −ψ0)
and if we consider the characters χ′0, χ1, χ2 and the ordering (0, 1, 2) for the
elements of the circuit we obtain

(ω1 − ω′0 + ψ′0)(ω2 − ω1 + ψ1) = 0,

while if we consider the ordering (0, 2, 1) we obtain the relation

(ω2 − ω′0 + ψ′0)(ω1 − ω2 + ψ2) = 0

as one can easily check by direct computation. The relations that we can
obtain with different orderings of the elements in the circuit are consequences
of the two above.
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Lemma 2.6.7. If
∑k

i=0 ciχi = 0 where ci = ±1 for all i,

k∏
i=1

(ωi + ciψi − ωi−1 + ci−1ψi−1) = 0, (2.17)

Proof. We apply Lemma 2.6.5 to the identity
∑k

i=0 χ
′
i = 0 where we set χ′i :=

ciχi for all i. A glance at Equations (2.9) and (2.10) shows that the forms ω′i
and ψ′i associated with the χ′i satisfy ω′i = ωi and ψ′i = ciψi for all i, proving
the claimed equality.

Definition 2.6.8. Given a subset A ⊆ E, for every i ∈ E let

ηAi :=

{
ωi if i ∈ A
ψi otherwise

.

Thus, if B ⊆ E is disjoint from A we can define

ηA,B :=
∏

i∈A∪B
ηAi ,

where the factors are in increasing order with respect to the total order on E.

Proposition 2.6.9. Let C be a circuit of the matroid such that the correspond-
ing minimal linear dependency has the form

∑
i∈C ciχi = 0 where ci ∈ {±1}

for all i. Then, ∑
j∈C

∑
A,B⊂C

C=AtBt{j}

(−1)|A≤j |cBηA,B = 0 (2.18)

where, for every B ⊆ E, we write cB :=
∏
i∈B ci. Moreover, as a consequence

of the equation above we have∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even

(−1)|A≤j |cBηA,B = 0. (2.19)

In particular ∂ωC corresponds to the sum of the terms with B = ∅.

Proof. Equation (2.17) can be rewritten as follows:

k∑
j=0

∏
i<j

(−ωi + ciψi)
∏
i>j

(ωi + ciψi) = 0 (2.20)

Expanding all the products and using Definition 2.6.8 we obtain the claimed
formula (2.18).
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Moreover, using the negated equation
∑k

i=0−ciχi = 0, Lemma 2.6.7 gives

k∏
i=1

(ωi − ciψi − ωi−1 − ci−1ψi−1) = 0. (2.21)

Adding this relation to the one in (2.17), and decomposing the expansion of
the product in two parts, one containing all the terms ωAψB with |B| even
and the other one containing all those terms with |B| odd, it can be shown
that each of the two parts must equal 0.

In [DP05, Thm. 5.2] De Concini and Procesi prove that the complement
of a unimodular toric arrangement is formal. They do this by showing that
the rational cohomology ring is isomorphic to the sub-algebra of closed forms
generated by ωi = dlog(ebi − eχi) for i ∈ E and ψχ = dlog(eχ) for χ ∈ Λ. The
formal relations among these generators are implicit in [DP05, eq. (20)].

Notice that if the arrangement A is essential the forms ψi = dlog(eχi)
for i ∈ E generate H1(T ;Q). It follows that the relations stated in Proposi-
tion 2.6.9 above lead to a presentation of the cohomology ring with respect
to the generators ωi’s and ψi’s. Hence we have the following reformulation of
the result of [DP05].

Theorem 2.6.10. Let A be an essential unimodular toric arrangement. The
rational cohomology algebra H∗(M(A),Q) is isomorphic to the algebra E with

• Set of generators eA;B, where A and B are disjoint and such that AtB
is an independent set; the degree of the generator eA;B is |A tB|.

• The following types of relations

– For any two generators eA;B, eA′;B′,

eA;BeA′;B′ = 0 (2.22)

if A tB tA′ tB′ is a dependent set, and otherwise

eA;BeA′;B′ = (−1)`(A∪B,A
′∪B′)eA∪A′;B∪B′ . (2.23)

– For every linear dependency
∑

i∈E niχi = 0 with ni ∈ Z, a relation∑
i∈E

nie∅;{i} = 0. (2.24)

– For every circuit C ⊆ E, with linear dependency
∑

i∈C niχi = 0
with ni ∈ Z, a relation∑

j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |cBeA;B = 0 (2.25)

where, for all i ∈ C, ci := sgnni and cB =
∏
i∈B ci.
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Remark 2.6.11. In order to check that the presentation above gives the same
algebra described in [DP05], we can first notice that relation (2.23) implies that
our algebra is generated in degree 1, by elements of the form e{i};∅ and e∅;{i},
that correspond respectively to the generators λai,χi and ωi in [DP05, p. 410].
Then our relation (2.22) corresponds to relation (2) of [DP05, p. 410]; our
relation (2.24) corresponds to relation (1) of [DP05, p. 410] and our relation
(2.25) corresponds to relation (20’) that is implicit in [DP05].

Example 2.6.12. Going on with the arrangement of Example 2.6.3 and using
the relation −χ0 +χ1 +χ2 = 0 we obtain that the rational cohomology of the
complement of arrangement B′ has a presentation with generators

ω0, ω1, ω2, ψ0, ψ1, ψ2

where −ψ0 + ψ1 + ψ2 = 0 and relation (2.19) (or equivalently relation (2.25))
gives

ω0ω1 − ω0ω2 + ω1ω2 − ψ0ψ1 − ψ0ψ2 + ψ1ψ2 = 0.

Note that ψ0ψ1 + ψ0ψ2 = ψ0ψ0 = 0 and hence the relation above can be
simplified.

2.7 Coverings of arrangements

Recall that we consider a primitive arrangement A in a torus T .

Given a lattice Λ′, Λ ⊆ Λ′ ⊆ Λ ⊗ Q we consider the Galois covering
U → T associated with the subgroup Λ′∗ ⊆ Λ∗ ' π1(T ) whose group of deck
automorphisms is (Λ′/Λ)∗ ' Gal(U/T ).

Definition 2.7.1. Let f :U → T be a finite covering, and call AU the lift of
A through f to the torus U . More precisely, let

AU :=
⋃
H∈A

π0(f−1(H)),

the set of connected components of preimages of hypertori in A. Moreover,
given i ∈ E let

ai := |π0(f−1(Hi))|

denote the number of connected components of f−1(Hi). Given q ∈ f−1(Hi),
let

HU
i (q)

denote the connected component of f−1(Hi) containing q.

Remark 2.7.2. The previous definition ensures that AU is again a primitive
arrangement. It is, however, not necessarily central.
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In fact, if we call χ̂ := f ◦ χ the character of U induced by χ, we see
that the connected components f−1(Hi) are associated with the (primitive)
character χ̂i

ai
. More precisely, every L ∈ π0(f−1(Hi)) has equation

χ̂i
ai

=
χ̂i
ai

(q)

where q is any point of L.

Logarithmic forms on coverings

Our next task is to describe the logarithmic forms on M(AU ) associated with
AU .

Let f : U → T be a finite covering and let M(AU ) be as above. The
algebraic de Rham complex Ω•M(AU ) splits as direct sum of subcomplexes

Ω•M(AU ) '
⊕

λ∈Λ′/Λ

Ω•λ (2.26)

where Ω•λ consists of forms α such that for any τ ∈ Gal(U/T ) we have that
τ∗(α) = λ(τ)α. In particular the subcomplex of invariant forms Ω•1 is canon-
ically identified with Ω•M(A).

For any i ∈ E and any point q ∈ f−1(Hi) we set

ωUi (q) :=
1

2πi
d log

(
1− e

χ̂i
ai
− χ̂i
ai

(q)
)

(2.27)

for the logarithmic form in Ω1
M(AU ) associated with Hi(q). Notice that this

form does not depend on the choice of q in the same connected component.

Moreover, let

ψUi :=
f∗(ψi)

ai
= d log e

χ̂i
ai , (2.28)

where the upper symbol ∗ denotes as usual the pull-back.

More generally, given any A ⊆ E, choose q ∈ f−1(∩i∈AHi) and let

ωUA(q) :=
∏
i∈A

ωUi (q) and ωUA(q) :=
∏
i∈A

ωUi (q), (2.29)

where the factors are taken in increasing order with respect to the index i and
ωUi (q) := 2ωUi (q) − ψUi . Moreover, under the same set-up, for disjoint A and
B let

ηUA,B(q) :=
∏

i∈AtB
ηUi (q)

where ηUi (q) = ωUi (q) if i ∈ A and ηUi (q) = ψUi if i ∈ B.
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Proposition 2.7.3. Let A be any set of indices and let W be a connected
component of

⋂
i∈AHi. Let p be any point in W . The class∑

q∈f−1(p)

ωUA(q)

is invariant with respect to the group G of deck automorphisms of f and it
does not depend on the choice of the point p in W .

Proof. The only nontrivial case is when the characters associated with the
indices in A are linearly independent, otherwise ωUA(q) = 0.

Let τ ∈ G. Using the definitions we have the equalities

τ∗(ωUi (q)) = τ∗
(

1

2πi
d log

(
1− e

χi
ai
−χi
ai

(q)
))

=
1

2πi
d log

(
1− e

χi
ai

+
χi
ai

(τ)−χi
ai

(q)
)

=
1

2πi
d log

(
1− e

χi
ai
−χi
ai

(τ−1q)
)

= ωUi (τ−1(q)).

Since the forms ψi are translation-invariant, we obtain immediately also

τ∗(ωUi (q)) = ωUi (τ−1(q)).

If we write A = {a1, . . . , ak}, we see that every form

ωUA(q) = ωUa1
(q)ωUa1

(q) · · ·ωUak(q)

satisfies
τ∗
(
ωUA(q)

)
= ωUA(τ−1(q)).

The claim follows.

The previous result allows us to give the following definition.

Definition 2.7.4. Let A = {Hi}i∈E be a toric arrangement in the torus
T and consider a finite covering f : U → T . Consider an independent set
A ⊆ E, let W be a connected component of ∩i∈AHi and choose p ∈W . Since
the pullback map f∗ is injective, we can define forms ωfW,A and ωfW,A as the
unique forms on M(A) such that

f∗(ωfW,A) =
1

| ∩i∈A HU
i (q0) ∩ f−1(p)|

∑
q∈f−1(p)

ωUA(q)

and

f∗(ωfW,A) =
1

| ∩i∈A HU
i (q0) ∩ f−1(p)|

∑
q∈f−1(p)

ωUA(q)

where q0 is any point in f−1(p).
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U

p1 q1 r1

p2 q2 r2

p3 q3 r3

f p q r

T

Figure 2.2: A picture on the compact torus of the covering described in Ex-
ample 2.7.6.

Remark 2.7.5. If the arrangement AU is unimodular the formula in the defi-
nition above becomes

f∗(ωfW,A) =
1

|L ∩ f−1(p)|
∑

q∈f−1(p)

ωUA(q)

where L is any connected component of f−1(W ).

Example 2.7.6. We can now consider the arrangement B of Example 2.2.11
and the covering f : U = (C∗)2 → T = (C∗)2 given by (u, v) 7→ (u, v3). The
arrangement BU is unimodular and is given by the 7 hypertori with equations

u = 1, v = e
2πia

3 and uv = e
2πib

3 for a, b = 0, 1, 2.
The three subarrangements of BU containing respectively the hypertori

passing through p1 = (1, 1), p2 = (1, e
2πi
3 ), p3 = (1, e

4πi
3 ) are, up to transla-

tion, isomorphic to the unimodular arrangement B′, while the subarrange-
ments passing through the other six points are all isomorphic to the boolean
arrangement in (C∗)2 given by the hypertori with equations x = 1 and y = 1.
We have the form

f∗(ωfp,{0,1}) =
−1

4π2

(
1 + uv

1− uv
d(uv)

uv

1 + v

1− v
d v

v
+

1 + ζ3uv

1− ζ3uv

d(uv)

uv

1 + ζ3v

1− ζ3v

d v

v
+

+
1 + ζ2

3uv

1− ζ2
3uv

d(uv)

uv

1 + ζ2
3v

1− ζ2
3v

d v

v

)
=

=
−3

4π2

u3v6 + u3v3 + 4u2v3 + 4uv3 + v3 + 1

uv (v3 − 1) (u3v3 − 1)
dud v

where ζ3 = e
2πi
3 and hence, taking the pushforward and dividing by the degree,

we get

ωfp,{0,1} =
−1

4π2

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dx d y.

2.8 Separation

To deal with the non-unimodular case, the following definition turns out to
be useful.
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Definition 2.8.1. Let A be an independent subset of E. We say that a cov-
ering f : U → T separates A if, for any connected component W of ∩i∈AHi

and for all i ∈ A there exist qi ∈ f−1(Hi) such that f(∩i∈AHU
i (qi)) = W .

Remark 2.8.2. If f :U → T is a covering such that the arrangement AU is
unimodular, then f separates A for all independent set A ⊂ E.

Proposition 2.8.3. Let A ⊆ E be an independent set. There exists a covering
f : U → T that separates A.

Proof. Let Γ be a direct summand of RadΛ ΓA in Λ, hence Λ = RadΛ ΓA ⊕ Γ.
Consider the lattice

Λ(A) :=

〈
χi

m(A)

〉
i∈A
⊕ Γ ⊆ Λ⊗Q.

We have the tower of subgroups

ΓA ⊆ RadΛ ΓA ⊆
〈

χi
m(A)

〉
i∈A

where by definition [RadΛ ΓA : ΓA] = m(A). Moreover since A is independent
we have [

〈 χi
m(A)

〉
i∈A : ΓA] = m(A)|A|. Hence we have [

〈 χi
m(A)

〉
i∈A : RadΛ ΓA] =

m(A)|A|−1. The inclusion Λ ⊆ Λ(A) induces a covering f :U → T of degree
[Λ(A) : Λ] = [

〈 χi
m(A)

〉
i∈A : RadΛ ΓA] = m(A)|A|−1. The first equality follows

since Γ is a direct summand of both terms in the left hand side.

This covering separates A. In fact, we claim that for every connected com-
ponent W of

⋂
i∈AHi and any choice of a point q ∈ f−1(W ), the intersection⋂

i∈AH
U
i (q) is connected. To prove this claim, let k denote the number of con-

nected components of
⋂
i∈AH

U
i (q). We count in two different ways the number

of connected components of f−1(
⋂
i∈AHi). On the one hand, for every i we

have m(A) connected components of f−1(Hi) and, once we have chosen for
every i a connected hypertorus in f−1(Hi), their intersection has k connected
components. In this way we have km(A)|A| such components. On the other
hand, the number of connected components of the preimage of each of the
m(A) connected components of

⋂
i∈AHi is at most m(A)rk(A)−1, the degree

of the covering – hence we obtain a count of at most m(A)rk(A) = m(A)|A|

components. We conclude k = 1.

The following theorem motivates our definition of separating coverings.

Theorem 2.8.4. Let A ⊂ E be an independent set. If f : U → T and
g : V → T are coverings that separate A, then ωfW,A = ωgW,A. Analogously we

have ωfW,A = ωgW,A.

In the proof we will make use of the following remark.
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Remark 2.8.5. For every index i, let HU
i,1, . . . H

U
i,mi

, denote the connected com-

ponents of f−1(Hi) and ωUi,j := ωHU
i,j

be the associated forms.

If we assume that f separates A, then Definition 2.7.4 is equivalent to

f∗(ωfW,A) =
∑

1≤j≤m
∩iHU

i,ji
⊆f−1(W )

∏
i∈A

ωUi,ji

where the sum is indexed using the componentwise ordering among integer
A-tuples 1 := (1, . . . , 1), j := (ji)i∈A, m := (mi)i∈A.

Proof of Theorem 2.8.4. We give the proof for ωfW,A = ωgW,A, the other case
being identical.

The theorem follows in its generality if we first assume that the statement
holds when g = f ◦ h, where h : V → U is a finite covering. In this case we
have

V
h
//

g

''
U

f
// T

and

g∗(ωfW,A) = h∗(f∗(ωfW,A)) = h∗

( ∑
1≤j≤m

∩iHU
i,ji
⊆f−1(W )

∏
i∈A

ωUi,ji

)

where the multi-index j is as in the Remark 2.8.5. The last equality follows
since f separates A.

Again Remark 2.8.5 applied to g gives

g∗(ωgW,A) =
∑

1≤k≤n
∩iHV

i,ki
⊆g−1(W )

∏
i∈A

ωVi,ki .

where for all i, HV
i,1, . . . ,H

V
i,ni

are the connected components of g−1(Hi), k =
(k1, . . . , k|A|), and n = (n1, . . . , n|A|).

Now we have that

h∗(ωUi,ji) =
∑

h(HV
i,ki

)=HU
i,ji

ωVi,ki .
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Hence from the previous equality we get

g∗(ωfW,A) =
∑

1≤j≤m
∩iHU

i,ji
⊆f−1(W )

∏
i∈A

h∗(ωUi,ji)

=
∑

1≤j≤m
∩iHU

i,ji
⊆f−1(W )

∏
i∈A

∑
h(HV

i,ki
)=HU

i,ji

ωVi,ki

=
∑

1≤j≤m
∩iHU

i,ji
⊆f−1(W )

∑
1≤k≤n

h(HV
i,ki

)=HU
i,ji

∏
i∈A

ωVi,ki

=
∑

1≤k≤n
∩iHV

i,ki
⊆g−1(W )

∏
i∈A

ωVi,ki

= g∗(ωgW,A).

Finally, in the general case of two coverings f : U → T and g : V → T , we
can consider the diagram

V ′

h

~~   
g′

��

U

f   

V

g
~~

T

where h : V ′ → U is the pullback of g by f and g′ = f ◦ h. Since f separates
A, then also g′ separates A and we apply the first part of the proof to the
maps f and g′.

Remark 2.8.6. Since the covering f : U → V is finite, we have that ωfW,A =

f∗ω
U
A(q) for any q ∈ f−1(W ) where f∗ is the pushforward associated with the

covering map f .

Using Theorem 2.8.4, we can state the following definition.

Definition 2.8.7. Given A ⊂ E independent and given W a connected com-
ponent of ∩i∈AHi, we define

ωW,A := ωfW,A

and

ωW,A := ωfW,A

where f : U → T is any covering that separates A.
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Remark 2.8.8. We would like to convince the reader that the definition of
the forms ωW,A and ωW,A given above is the most natural choice in order to
provide a set of form generating the cohomology of the toric complement.

As seen in (2.26), once we fix a covering f : U → T with Galois group
G, the G-module Ω1(M(AU )) has a natural decomposition as a direct sum of
semi-invariant modules associated with the characters of G. The forms defined
above can be identified with certain G-invariant forms on M(AU ). We have
that

Ωk
λΩk′

λ′ ⊆ Ωk+k′

λ+λ′ .

In particular, if the sum of the characters of the factors is the trivial character,
we get invariant forms, which correspond to forms on M(A).

The hypothesis that f separates A guarantees that we obtain enough semi-
invariant 1-forms associated with the hypertori f−1(Hi), for i ∈ A, in order
to obtain m(A) independent invariant classes.

Lemma 2.8.9. If A,A′ ⊆ E are such that AtA′ is an independent set and W ,
resp. W ′ are a choice of a connected component of

⋂
i∈AHi, resp.

⋂
i∈A′ Hi,

we can compute

ωW,AωW ′,A′ = (−1)`(A,A
′)

∑
L∈π0(W∩W ′)

ωL,AtA′ .

Proof. Consider a covering f :U → T that separates the independent set AtA′
(e.g. the one described in Proposition 2.8.3). Then, by definition, in order
to evaluate the product ωW,AωW ′,A′ we consider its pullback f∗(ωW,AωW ′,A′)
which, with Remark 2.8.5, equals( ∑

1≤j≤m
∩iHU

i,ji
⊆f−1(W )

∏
i∈A

ωUi,ji

)( ∑
1≤j′≤m′

∩i′HU
i′,j′

i′
⊆f−1(W ′)

∏
i′∈A′

ωUi′,j′
i′

)

=
∑

1≤(j,j′)≤(m,m′)
∩iHU

i,ji
∩i′HU

i′,j′
i′
⊆f−1(W ′∩W )

∏
i∈A

ωUi,ji

∏
i′∈A′

ωUi,j′
i′

=
∑

1≤j≤(m,m′)
∩i∈AtA′HU

i,ji
⊆f−1(W ′∩W )

(−1)`(A,A
′)
∏

i∈AtA′
ωU
i,ji
,

where j = (j, j′). The latter equals, by definition

f∗

(
(−1)`(A,A

′)
∑

L∈π0(W∩W ′)

ωL,AtA′

)

as was to be shown.
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Remark 2.8.10. Assume that ∩i∈AHi is connected and call it W . Then, since
the identity separates A, we have ωW,A = ωA.

Definition 2.8.11. Given A ⊂ E independent and given W a connected
component of ∩i∈AHi, we write ηW,A,B for the form

(−1)`(A,B)ωW,AψB.

In the following if W is not a connected component of ∩i∈AHi the ex-
pression ηW,A,B will be considered as meaningless and it will be treated as
zero.

Remark 2.8.12. We have the following consequence of Lemma 2.8.9.

If A,A′, B,B′ ⊆ E are such that AtA′tBtB′ is an independent set and W ,
resp. W ′ are a choice of a connected component of

⋂
i∈AHi, resp.

⋂
i∈A′ Hi,

we can compute

ηW,A,BηW ′,A′,B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

ηL,AtA′,BtB′ .

Definition 2.8.13. We introduce the increasing filtration F of H∗(M(A);Z)
defined by

FiH
∗(M(A);Z) :=

∑
j≤i

Hj(M(A);Z) ·H∗(T ;Z).

Such a filtration is the Leray filtration of the inclusion M(A) ↪→ T. The
same filtration, with rational coefficients, was introduced in [DP05, Remark
4.3.(2)]. The associated graded module is

grk(H
∗(M(A))) =

⊕
W∈L(A)

codim(W )=k

H∗(W )⊗Hk(M(A[W ])) (2.30)

where A[W ] is the hyperplane arrangement introduced in Definition 2.2.9.

Lemma 2.8.14. Let A,B ⊆ E such that A tB is independent and let W be
a connected component of ∩i∈AHi. Then, the image of ηW,A,B in the graded
ring gr|A|(H

∗(M(A))) equals

(−1)`(B,A)2|A|ψB ⊗ eA ∈ H |B|(W )⊗H |A|(M(A[W ])),

where eA denotes the canonical generator in the top-degree of the OS-algebra
of the hyperplane arrangement A[W ] associated with the hyperplanes indexed
by A (cf. Definition 2.2.9).
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Proof. We consider the corresponding graduation grU for the lift to a unimod-
ular covering f : U → T (e.g., the one separating A in Proposition 2.8.3).

By multiplicativity of grk, it suffices to prove the case B = ∅. We thus have
to consider ωW,A which, by Remark 2.8.6, can be written as ωW,A = f∗ω

U
A(q),

where q is a fixed point in f−1(W ). Now,

grUk
(
ωUA(q)

)
= grUk

(
2|A|ωUA(q)

)
,

hence
grk(ωW,A) = f∗(grk ω

U
A(q)) = grk(2

|A|ωW,A),

and, since exp∗p(ωi) = ei, the class [2|A|ωW,A] maps to the element 2|A|⊗ eA in

H0(W )⊗H |A|(M(A[W ])) as desired.

2.9 Rational cohomology

Let A = {H0, . . . ,Hk} be a primitive, central and essential arrangement in
the torus T . Suppose further that the associated matroid has exactly one
circuit C = E, and hence rkE = k. Let χ0, . . . , χk be the associated list of
characters.

Recall that ΓC ⊂ Λ is the sublattice generated by the characters of C and
RadΛ ΓC is the intersection (Q⊗Z ΓC) ∩ Λ.

Definition 2.9.1. For every i = 0, . . . , k set

ai :=
∏
j 6=i

m(C \ {j}).

We call Λ(C) the lattice in Q⊗Z Λ generated by the elements χi
ai

.

Remark 2.9.2. Since the matroid associated with A has exactly one circuit
(i.e. C = E) and A is essential we have that Λ = RadΛ ΓC , hence m(C) is
precisely the index of ΓC in Λ.

Lemma 2.9.3. In Λ(C) we have the relation

k∑
i=0

ci
χi
ai

= 0 (2.31)

where ci ∈ {+1,−1} for all i.

Proof. This follows from Corollary 2.2.13, since the product

aim(C \ {i}) =
k∏
j=0

m(C \ {j})

does not depend on the index i.

72 Roberto Pagaria



2.9. RATIONAL COHOMOLOGY

Lemma 2.9.4. The lattice Λ(C) contains Λ.

Proof. We split the claim into two inclusions:

Λ
(i)

⊆ 1

m(C)
ΓC

(ii)

⊆ Λ(C).

Inclusion (i) follows from the fact that, by Remark 2.9.2 the quotient Λ/ΓC
is a group of cardinality m(C), hence m(C)Λ ⊂ ΓC .

For inclusion (ii), notice that every element of 1
m(C)ΓC can be written as

a combination

1

m(C)

k∑
i=0

niχi =

k∑
i=0

(
niai
m(C)

)
χi
ai

for some ni ∈ Z. Now, since C is a circuit, m(C) divides every m(C \ {i}),
i = 0, . . . , k (e.g., by Remark 2.2.12-(c)). Hence all parenthesized coefficients
on the r.h.s. are integers, which means 1

m(C)ΓC ⊆ Λ(C), as claimed.

Lemma 2.9.5. The inclusion of lattices Λ ⊆ Λ(C) induces a covering of T
of degree

d =

k∏
j=0

m(C \ {j})k−1.

Proof. It is enough to prove that d as defined above equals the index of Λ in
Λ(C).

Let us fix an index i and consider the inclusions

ΛC\{i} ⊆ Λ ⊆ Λ(C).

Since (by Lemma 2.9.3) the lattice Λ(C) is generated by the basis {χjaj | j 6= i},
the index of ΛC\{i} in Λ(C) is

[Λ(C) : ΓC\{i}] =
∏
j 6=i

aj .

On the other hand, m(C \ {i}) is by definition the index of ΓC\{i} in Λ =
RadΛ ΓC\{i}. In conclusion, the desired index is

[Λ(C) : Λ] =
[Λ(C) : ΓC\{i}]

[Λ : ΓC\{i}]
=

∏
j 6=i aj

m(C \ {i})

=

∏
j 6=i
∏
l 6=jm(C \ {l})

m(C \ {i})
=

k∏
j=0

m(C \ {j})k−1

as claimed.

Cohomology and Combinatorics of Toric Arrangements 73



CHAPTER 2. COHOMOLOGY

Definition 2.9.6. Let

πU :U → T

denote the covering induced by the inclusion Λ ⊆ Λ(C).

We denote by AU the central arrangement in the torus U induced by the
characters χi

ai
in Λ(C). Notice that AU is clearly primitive, since the χi

ai
form

a basis of Λ(C).

Lemma 2.9.7. The arrangement AU is unimodular.

Proof. For every j ∈ C the set {χiai }i 6=j is a basis of the lattice Λ(C). In fact

C \ {j} is independent and by (2.31) we have that
χj
aj

belongs to the lattice

generated by the characters χi
ai

.

Hence for every subset A ( C we can choose j ∈ C \ A. Then the set
{χiai }i∈A can be completed to a basis {χiai }i 6=j of Λ(C).

Notice that the number of connected component of π−1
U (Hi) is ai. In fact

for j 6= i the character χi can be written in the basis {χkak }k 6=j as χi = ai
χi
ai

.

Lemma 2.9.8. Let A ( C, let W be a connected component of
⋂
i∈AHi and

choose p ∈ W . Then, for every layer L of AU such that πU (L) = W , the
number of preimages of p contained in L is

|L ∩ π−1
U (p)| = m(A)

k∏
i=0

m(C \ {i})k−1−|A|
∏
i∈A

m(C \ {i}).

Proof. The cardinality of the preimage of p is equal to the degree of the
covering, computed in Lemma 2.9.5. On the other hand, given W a connected
component of ∩i∈AHi, the number of connected components of π−1

U (W ) is

equal to
∏
i∈A ai
m(A) . Hence

|L ∩ π−1
U (p)| =

∏k
i=0m(C \ {i})k−1∏

i∈A ai
m(A)

= m(A)

k∏
i=0

m(C \ {i})k−1−|A|
∏
i∈A

m(C \ {i}).

Example 2.9.9. In the case of the arrangement of Example 2.7.6 with matrix(
3 0 1
1 1 0

)
we have that the lattice Λ = Z2 coincides with the lattice ΛC . In this case
we have a0 = 3, a1 = 3, a2 = 1, hence the lattice Λ(C) is generated by 〈e1 +
e2
3 ,

e2
3 , e1〉. In particular the inclusion Λ ⊂ Λ(C) corresponds to the covering

74 Roberto Pagaria



2.9. RATIONAL COHOMOLOGY

f :U → T of Example 2.7.6 (see Figure 2.2). Notice that, with respect to the
basis { e1,

e2
3 } of Λ(C), the arrangement BU is described by the matrix(

3 0 1
3 3 0

)
.

Lemma 2.9.10. For any A,B ⊆ C such that AtB is a maximal independent
subset of C, for any connected component W of

⋂
i∈AHi and p ∈W we have

π∗U (ηW,A,B) = (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈π−1

U (p)

ωUA(q)ψUB . (2.32)

Proof. With Equation (2.28) we have

π∗U (ψB) =
(∏
i∈B

ai

)
ψUB .

and hence, applying this equality and Remark 2.7.5 to Definition 2.8.11, we
get

π∗U (ηW,A,B) = (−1)`(A,B)

∏
i∈B ai

|L ∩ π−1
U (p)|

∑
q∈π−1

U (p)

ωUA(q)ψUB . (2.33)

The coefficient in formula (2.33) can be rewritten as∏
i∈B ai

|L ∩ π−1
U (p)|

=

∏
i∈B ai

m(A)
∏k
i=0m(C \ {i})k−1−|A|∏

i∈Am(C \ {i})

=

∏k
i=0m(C \ {i})|B|

m(A)
∏k
i=0m(C \ {i})|B|−1

∏
i∈A∪Bm(C \ {i})

=

∏k
i=0m(C \ {i})

m(A)
∏
i∈A∪Bm(C \ {i})

=
m(A ∪B)

m(A)
,

and the claim follows.

Definition 2.9.11. For any A,B ⊆ C such that AtB is an independent set
and every q ∈ π−1

U (
⋂
i∈AHi), we set

ηUA,B(q) := (−1)`(A,B)ωUA(q)ψUB .

Recall from Proposition 2.6.9 that given a circuit C, for every B ⊂ C we
set cB =

∏
i∈B ci.
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Theorem 2.9.12. Let L be a connected component of ∩i∈CHi. We have

∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
ηW,A,B = 0. (2.34)

Proof. Now we fix a point p ∈
⋂
i∈C Hi and we use relation (2.19) in AU . This

gives us, for every q ∈ π−1
U (p),∑

j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |ηUA,B(q)cB = 0.

Summing over all q ∈ π−1
U (p), we get

0 =
∑

q∈π−1
U (p)

∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |cBη
U
A,B(q)

=
∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.

(−1)|A≤j |cB
∑

q∈π−1
U (p)

ηUA,B(q)

=
∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
π∗U (ηW,A,B).

Since π∗U is an injective algebra homomorphism, we obtain the claimed equal-
ity.

We now drop the assumption that the arithmetic matroid has a unique
circuit and we go back to the general set-up of any arrangement A in a torus
T .

Theorem 2.9.13. Let A be an essential arrangement. The rational cohomol-
ogy algebra H∗(M(A),Q) is isomorphic to the algebra E with

• Set of generators eW,A;B, where W ranges over all layers of A, A is a
set generating W and B is disjoint from A and such that A t B is an
independent set; the degree of the generator eW,A;B is |A tB|.

• The following types of relations:
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– For any two generators eW,A;B, eW ′,A′;B′,

eW,A;BeW ′,A′;B′ = 0

if A tB tA′ tB′ is a dependent set, and otherwise

eW,A;BeW ′,A′;B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

eL,A∪A′;B∪B′ .

(2.35)

– For every linear dependency
∑

i∈E niχi = 0 with ni ∈ Z, a relation∑
i∈E

nieT,∅;{i} = 0. (2.36)

– For every circuit C ⊆ E, with dependency
∑

i∈C niχi = 0 with
ni ∈ Z, and for every connected component L of ∩i∈CHi a relation∑

j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even.
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
eW,A;B = 0 (2.37)

where, for all i ∈ C, ci := sgnni, cB =
∏
i∈B ci.

Proof. Consider the map

Φ : E → H∗(M(A),Q), eW,A;B 7→ [ηW,A,B].

This map is well-defined – in fact, in the cohomology ring Equation (2.35)
holds by Remark 2.8.12, Equation (2.36) already holds in the cohomology of
the ambient torus, and Equation (2.37) holds by Theorem 2.9.12.

Now fix, for every independent A ⊆ E, a subset D(A) ⊆ E such that
AtD(A) is a basis of the matroid. Then, notice that relations (2.37) and (2.36)
allow us to express every generator in terms of generators eW,A;B where A is
a no-broken-circuit set and B is a subset of D(A). Then, with Lemma 2.8.14,
the k-th graded part of the image of Φ equals grkH

∗(M(A),Q). We conclude
that Φ is bijective, hence it defines the desired isomorphism.

Remark 2.9.14. The relations in the presentation above hold for differential
forms and not only for their cohomology classes. As a consequence the space
M(A) is rationally formal. This fact has been already observed by [DP05] for
unimodular arrangements and proved by [Dup16b] in general.

Remark 2.9.15. Notice that all relations of type (2.36) are implied by those
associated with minimal linear dependencies (i.e., circuits).

Moreover, the above presentation is completely encoded in the datum of
the poset of layers of A (needed, e.g. for Relations (2.35), (2.37)) and in the
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(relative) sign pattern of the minimal linear dependencies. But by [Pag19b,
Theorem 3.12] (see Corollary 2.2.13), the latter can also be recovered by the
poset.

The complements of the two toric arrangements constructed in the already
quoted paper [Pag19d] (see Remark 2.2.17) turn out to have non-isomorphic
cohomology rings. Since the two arrangements have isomorphic matroids, this
implies that the cohomology ring cannot be determined purely in terms of the
arithmetic matroid.

Example 2.9.16. We can provide a presentation of the rational cohomology
of the complement of arrangement B. The cohomology ring is generated by:

ω0 =
1

2πi
dlog

(
(1− x3y)2

x3y

)
, ψ0 =

1

2πi
dlog(x3y),

ω1 =
1

2πi
dlog

(
(1− y)2

y

)
, ψ1 =

1

2πi
dlog(y),

ω2 =
1

2πi
dlog

(
(1− x)2

x

)
, ψ2 =

1

2πi
dlog(x)

and

ωp,{0,1} =
−1

4π2

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dx d y,

ωq,{0,1} =
−1

4π2

x3y2 + x3y + 4ζ2
3x

2y + 4ζ3xy + y + 1

xy (y − 1) (x3y − 1)
dx d y,

ωr,{0,1} =
−1

4π2

x3y2 + x3y + 4ζ3x
2y + 4ζ2

3xy + y + 1

xy (y − 1) (x3y − 1)
dx d y

where ζ3 = e
2πi
3 . The relations are

ωiψi =0 ∀ i,
ω0ω1 =ωp,{0,1} + ωq,{0,1} + ωr,{0,1},

−ψ0 + ψ1 + 3ψ2 =0,

ωp,{0,1} − ω0ω2 + ω1ω2 =− ψ1ψ2 + ψ0ψ2 +
1

3
ψ0ψ1

where the last relation can be verified checking the equalities

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dx d y − x3y + 1

y(x3y − 1)

x+ 1

x(x− 1)
d y dx+

+
y + 1

y(y − 1)

x+ 1

x(x− 1)
d y dx =

dx d y

xy
=

= −dlog(y) dlog(x) + dlog(x3y) dlog(x) +
1

3
dlog(x3y) dlog(y).
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2.10 Integral cohomology

Proposition 2.10.1. The forms ωW,A are integral forms.

Proof. We first prove our statement in the case when W is a point, hence
|A| = n and ωW,A is a n-form.

We will prove that for any integral cycle S ∈ Hn(M(A);Z) the integral∫
S
ωW,A

is an integer number. From the Universal Coefficients Theorem this implies
that ωW,A is an integral form.

Now, let f : U → T be any covering that separates A and such that the
arrangement AU is unimodular. For any cycle S ∈ Hn(M(A);Z) we have∫

S
ωW,A =

1

deg f

∫
f−1(S)

f∗(ωW,A)

=
1

deg f

∫
f−1(S)

∑
q∈f−1(W )

ωUA(q)

where the last equality follows from Remark 2.7.5.
Now we can observe that the integral∫

f−1(S)
ωUA(q)

does not depend on the point q ∈ f−1(W ). Moreover, since W is a point,
deg f = |f−1(W )|. We thus have∫

S
ωW,A =

∫
f−1(S)

ωUA(q)

for any point q ∈ f−1(W ). Since the arrangement AU is unimodular we have
(see (2.29)) ωUA(q) =

∏
i∈A ω

U
i (q). By definition (2.27) each factor ωUi (q) is an

integer form. Hence integrality of ωUA(q) implies integrality of ωW,A.
In the general case let W0 be the translate of W containing the identity

of T . We can consider the projection πW0 : T → T ′, where T ′ = T/W0.
The W0-invariant characters χi for i ∈ A induce characters χ′i of T ′, defining
hypertori H ′i = πW0(Hi) ⊆ T ′. Let W ′ = πW0(W ) be the component of⋂
i∈AH

′
i corresponding to W and consider the associated form ω′W ′,A on T ′.

Then ωW,A = π∗W0
(ω′W ′,A) and so integrality of ωW,A follows from integrality

of ω′W ′,A, which is granted because W ′ has dimension 0.

Proposition 2.10.2. For any independent set A t B ⊂ E and for any layer
W in ∩i∈AHi the form m(A)

m(AtB)ηW,A,B is integral.
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Proof. Let A = {b1, . . . , b|A|} be a basis of ΓA. We complete it to a basis

A ∪B = {b1, . . . , b|A|+|B|} of ΓAtB. We can define the forms

vj :=
1

2πi
d log(ebj ).

Hence we can consider the square matrix M = (mij) such that for every
j ∈ A tB we have that

ψj =

|A|+|B|∑
i=1

mijvj .

The matrix M is a block matrix of the form

M =

(
M1 M2

0 M3

)
with M1 a |A| × |A| matrix and M3 a |B| × |B| matrix. For j > |A| we have

that ωW,Aψj = ωW,A
∑|A|+|B|

i=|A|+1mijvj , i.e., using only entries of M3. Hence

ηW,A,B = ±ωW,A
|A|+|B|∏
j=|A|+1

ψj = ±det(M3)ωW,A

|A|+|B|∏
j=|A|+1

vj .

Since det(M3) = det(M)
det(M1) = m(AtB)

m(A) we have that m(A)
m(AtB)ηW,A,B is an integral

form.

Recall the filtration F of H∗(M(A)) introduced in Definition 2.8.13:

FiH
∗(M(A);Z) :=

⊕
j≤i

Hj(M(A);Z) ·H∗(T ;Z).

From Definition 2.6.1 we have that

[ωi] = 2[ωi] in F1 /F0H
∗(M(A);Z)

and
[ωW,A] = 2|A|[ωW,A] in F|A| /F|A|−1H

∗(M(A);Z) (2.38)

Definition 2.10.3. The Z-algebra R ⊂ Ω∗(M(A)) is the subalgebra gener-
ated by the closed forms ωW,Aα, where W runs among the layers of ∩i∈AHi

for A independent and α ∈ H∗(T ;Z).

Theorem 2.10.4. Let A be an essential toric arrangement. The integral
cohomology ring of M(A) is isomorphic to the algebra R:

R ' H∗(M(A);Z).

In particular the space M(A) is formal.
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Proof. Since the relations given in the presentation of Theorem 2.9.13 are
equalities between differential forms, the map i : R ↪→ H∗(M(A);Z) sending
each form to its cohomology class is an injective map of filtered modules. In
particular it induces an homomorphism

gr(i) : gr(R)→ gr(H∗(M(A);Z))

of graded modules. We claim that the map gr(i) is an isomorphism. Since the
strictly filtered map i is injective, gr(i) is injective too.

We will prove that gr(i) is also surjective. As seen in Equation (2.30), the
graded algebra decomposes as a direct sum

grk(H
∗(M(A))) =

⊕
W∈L(A)

codim(W )=k

H∗(W )⊗Hk(M(A[W ]));

moreover the summand H∗(W )⊗Hk(M(A[W ])) is generated, as a H∗(T ;Z)-
module, by the elements 1 ⊗ eA for A independent set such that W is a
connected component of

⋂
i∈AHi. From Equation (2.38) and Lemma 2.8.14

we have

2|A|[ωW,A] = [ωW,A] = 2|A|(1⊗ eA)W

where the inclusion of H∗(W ) ⊗Hk(M(A[W ])) in grk(H
∗(M(A))) is under-

stood.

Since the integral cohomology ring of the complement of an hyperplane
arrangement is torsion free [OS80], it follows that the algebra grk(H

∗(M(A)))
is torsion free.

For every layer W and every set of indices A the element

(1⊗ eA)W ∈ grk(H
∗(M(A)))

is the image of ωW,A and hence gr(i) is surjective. Since gr(i) is an isomor-
phism, the claim follows.

Proposition 2.10.5. The generators ηW,A,B can be expressed in terms of the
generators of the ring R = H∗(M(A);Z) as follows:

ηW,A,B =
∑
C⊆A

(−1)|C|2|A\C|
m(A \ C)

m(A)
ηL,A\C,B∪C

where L is the unique connected component of ∩i∈A\CHi such that W ⊂ L.

Proof. Take any covering f : U → T that separates A, e. g. the one given in
Proposition 2.8.3. From Definition 2.6.1, Definition 2.7.4, Lemma 2.9.10 and
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Definition 2.8.7 it follows that

f∗(ηW,A,B) = (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈f−1(p)

ωUA(q)ψUB =

= (−1)`(A,B)m(A ∪B)

m(A)

∑
q∈f−1(p)

∏
i∈A

(2ωUi (q)− ψUi )ψUB =

=
m(A ∪B)

m(A)

∑
q∈f−1(p)
C⊆A

(−1)`(A,B)+`(A\C,C)+|C|2|A\C|ωUA\C(q)ψUCψ
U
B

= f∗

∑
C⊆A

(−1)|C|2|A\C|
m(A \ C)

m(A)
ηL,A\C,B∪C


where L is the unique connected component of ∩i∈A\CHi containing W . The
equality follows from the injectivity of the pull-back map.

Example 2.10.6. For the arrangement B the previous relation gives the fol-
lowing presentations for the integral cohomology. We can take as generators
the forms

ω0 =
1

2πi
dlog(1− x3y), ψ0 =

1

2πi
dlog(x3y),

ω1 =
1

2πi
dlog(1− y), ψ1 =

1

2πi
dlog(y),

ω2 =
1

2πi
dlog(1− x), ψ2 =

1

2πi
dlog(x)

and

ωp,{0,1} =
−1

4π2

x2y + x+ 1

(y − 1) (x3y − 1)
dx d y,

ωq,{0,1} =
−ζ3

4π2

ζ2
3x

2y + ζ3x+ 1

(y − 1) (x3y − 1)
dx d y,

ωr,{0,1} =
−ζ2

3

4π2

ζ3x
2y + ζ2

3x+ 1

(y − 1) (x3y − 1)
dx d y

and we have the equivalent for the relations obtained for the rational coho-
mology:

ωiψi =0 ∀ i,
ω0ω1 =ωp,{0,1} + ωq,{0,1} + ωr,{0,1},

−ψ0 + ψ1 + 3ψ2 =0,

ωp,{0,1} − ω0ω2 + ω1ω2 =− ω0ψ2.
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As an example of application of Proposition 2.10.5 we can write the relation

ωp,{0,1} = 4ωp,{0,1} −
2

3
(ψ0ω1 + ω0ψ1) +

1

3
ψ0ψ1,

that can be also checked directly using the formulas above and the formulas
in Example 2.9.16.

2.11 Cohomology generated in degree one

In this section we will analyze the property of the cohomology ring of being
generated in degree one. We will show that this property depends only on the
poset of intersections and we will give a combinatorial criterion to determine
when this property holds.

Lemma 2.11.1. Let B be a graded algebra and {Fi}i∈N an exhaustive filtra-
tion. Then B is generated in degree one if and only if grF B does.

Since H•(T ;Z) ' H•(C∗;Z)⊗r is generated in degree one, H•(M ;Z) is
generated in degree one if and only if A0,•(A) is as well. A similar argument
show that H•(M ;Q) is generated in degree one if and only if the same holds
for B0,•(A).

Proposition 2.11.2. Let A be a toric arrangement and S ⊆ E be a indepen-
dent set of cardinality k. The following formula holds in A(A):∏

s∈S
1⊗ es =

∑
W∈Sk
W∈

⋂
S

1⊗ eS ,

where eS belongs to Hk(M(A[W ];Z).

Proof. The formula is an easy consequence of the definition of product in the
algebra A(A).

Remark 2.11.3. By Theorem 2.1.3, the elements

1⊗ eS ∈ H0(W ;Z)⊗Hk(M(A[W ];Z)

can be written uniquely as linear combinations of the 1⊗eS′ with S′ no broken
circuit.

1⊗ eS =
∑

T nbc-set

rSW,T (1⊗ eT ) ∈ H0(W ;Z)⊗Hk(M(A[W ];Z)

The coefficients rSW,T ∈ Z are uniquely determined by the poset S≤W .

Definition 2.11.4. Let Rk be the matrix whose columns are given by the
vectors (rSW,T )W,T for all S of cardinality k.
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The matrixRk are merely the coordinates of the element 1⊗eS with respect
to the basis { 1⊗ eT | T nbc-set }. Recall the numbers Nk of Theorem 2.2.16.

Theorem 2.11.5. The algebra H•(M(A);Q) is generated in degree one if and
only if all the matrices {Rk}k≤r have rank equal to Nk.

Proof. Fix the degree k. The cohomology algebra is generated in degree one
if and only if B(A) is, this is equivalent to the fact that B0,•(A) is generated
by B0,1(A). This happens if and only if Rk has a right inverse; it has a right
inverse if and only if Rk has rank equal to dimQ B0,k(A) = Nk.

Theorem 2.11.6. The algebra H•(M(A);Z) is generated in degree one if and
only if all the matrices {Rk}k≤r have Nk-th determinant divisor equal to one.

Proof. As in the proof of Theorem 2.11.5, the algebra A(A) is generated in
degree one if and only if Rk has a right inverse with integer coefficients. By
the Smith normal form, this right inverse exists if and only if the Nk-th de-
terminant divisor is equal to one.
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Chapter 3

Poset, Topology and
Combinatorics

We show that the integral cohomology algebra of the complement of a toric
arrangement is not determined by the poset of layers. Moreover, the rational
cohomology algebra is not determined by the arithmetic matroid, however it
is determined by the poset of layers.

Section 3.2 was appear in the first ArXiv version of [Pag19d], Sections 3.4
and 3.5 have appeared in the published version. Section 3.3 is part of [Pag19b].

3.1 Introduction

The study of the poset of layers of a toric arrangement is a new problem in
this area of interest.

Definition 3.1.1 (Poset of layers). The poset of layers of a toric arrangement
A is the set of connected components of intersections of elements of A, ordered
by reverse inclusion.

Our interest was motivated by the attempt of finding an axiomatic defini-
tion of these posets, a cryptomorphism with arithmetic matroids, and the re-
lation with the topology of toric arrangements. Very few is known about these
posets: they intervals are geometric lattices. The particular case of graphical
toric arrangements is studied in [AC17] and in [Bib16b] Bibby describes the
poset of toric arrangements associated to root systems. In [DGP17] this de-
scription of the poset is used to prove the shellability of posets associated to
root systems.

A natural question is the following:

Question 3.1.2. How the poset of layers varies among all representations of
an arithmetic matroid?
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A related poset is the (arithmetic) independence poset of a toric arrange-
ment, defined in [Len17c, Definition 5], [Mar18, Section 2] (under the name
of poset of torsions), and [DD18, Section 7] (under the name of poset of inde-
pendent sets).

Definition 3.1.3 (Arithmetic independence poset). The arithmetic indepen-
dence poset of a toric arrangement A is the set of pairs (I,W ) where I ⊆ A
is an independent set and W is a connected component of

⋂
I. The order

relation is defined as follows: (I1,W1) ≤ (I2,W2) if and only if I1 ⊆ I2 and
W1 ⊇W2.

D’Al̀ı and Delucchi proved that both posets are homology Cohen-Macaulay
over fields of all but a finite number of characteristics [DD18]. It was conjec-
tured that the arithmetic independence poset is shellable, we confute the con-
jecture in Section 3.5. Notice that the non-arithmetic versions of these posets
(the poset of flats and the independence poset of an ordinary matroid) are
shellable, and therefore Cohen-Macaulay over fields of every characteristic.

Plan

In Section 3.2, we prove that, provided that the underline matroid is modular,
all posets of layers are isomorphic. Representable modular matroids are direct
sum of matroids of rank at most two (see [Oxl11, Proposition 6.9.1]). This
decomposition holds as matroids, not as arithmetic matroids, thus we cannot
apply this technique to our proof.

The study continues in Section 3.3 with the introduction of discriminantal
toric arrangements in a, possibly disconnected, torus. We give the definition of
poset isotopy (roughly speaking it consists in translating the hypertori with-
out changing the poset of layers) and we prove that poset isotopy equivalent
arrangements are diffeomorphic. Moreover we show that not all arrangements
with the same characters and poset of layers are poset isotopy equivalent:
this property depends on which connected component of the discriminantal
arrangement they belong to.

In Section 3.4 we show that the integral cohomology algebra H(M(A),Z)
of the complement of a (central) toric arrangement is not combinatorial, i.e.
it does not depend only on the poset of layers (Theorem 3.4.2). This example
gives a negative answer to Question 7.3.1 of [CD17].

In section 3.5, we show that arithmetic matroids and matroids over Z
contain less information than the poset of layers. Indeed, we build two cen-
tral toric arrangements with the same arithmetic matroid, the same matroid
over Z, but with non-isomorphic posets of layers (Theorem 3.5.2) and non-
isomorphic cohomology algebra with rational coefficients. As consequence,
there cannot exist a “cryptomorphism” between arithmetic matroids (respec-
tively, matroids over Z) and any class of posets such that – in the representable
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cases – the poset associated to the matroid coincides with the poset of layers
of any representation.

3.2 Modular matroids and their posets

In this section we introduce a family of groups {KΛ(S)}S related to a toric
arrangements. We study their properties and we will use it to describe the
poset of layers of a toric arrangement. This is the key point in order to show
that the two arrangements of the Section 3.5 have different posets of layers.

The following class of modular matroids is quite small, though it contains
free matroids and projective geometries. For a general reference on modular
matroids, see [Oxl11, Section 6.9].

Definition 3.2.1. A pair of flats (S, T ) is modular if the following equality
holds

rk(S) + rk(T ) = rk(S ∩ T ) + rk(S ∪ T ).

A flat S is modular if for all flats T the pair (S, T ) is modular. A matroid is
modular if all its flats are modular.

The groups HΛ(S)

Let Λ be a lattice and { ve }e∈E be a finite set of elements of Λ. We define ΓS ,
for S ⊆ E, to be the sub-lattice spanned by the vectors ve, e ∈ S. The lattice
ΓE has a main role in the following discussion, therefore we address to it as
Γ. Consider the functions mΛ and mΓ, from the subsets of E to the positive
integer, defined by

mΛ(S)
def
=
∣∣∣Tor

(
Λ�ΓS

)∣∣∣ =
∣∣∣RadΛ ΓS�ΓS

∣∣∣ =
∣∣∣Ext1

(
Λ�ΓS ,Z

)∣∣∣
and by

mΓ(S)
def
=
∣∣∣Tor

(
Γ�ΓS

)∣∣∣ =
∣∣∣RadΓ ΓS�ΓS

∣∣∣ =
∣∣∣Ext1

(
Γ�ΓS ,Z

)∣∣∣ .
This collection of vectors in Λ defines a matroid ([n], rk) that can be en-

riched by the multiplicity function mΛ and the triple ([n], rk,mΛ) becomes a
representable arithmetic matroid. Alternatively, we can enrich the matroid by
the multiplicity function mΓ and obtain the representable arithmetic matroid
([n], rk,mΓ).

Recall the definition of the radical of a sub-lattice Γ′ ⊆ Λ′:

RadΛ′ Γ
′ def

= { v ∈ Λ′ | ∃n ∈ N+ such that nv ∈ Γ } .

Consider for each subset S of [n] the short exact sequence:

0→ RadΓ ΓS�ΓS →
RadΛ ΓS�ΓS →

RadΛ ΓS�RadΓ ΓS
→ 0.
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We call the rightmost group HΛ(S)
def
= RadΛ ΓS/RadΓ ΓS . Fix two subsets

S ⊂ T of E and examine the following commutative diagram.

0 RadΓ ΓS�ΓS
RadΛ ΓS�ΓS HΛ(S) 0

0 RadΓ ΓT�ΓT
RadΛ ΓT�ΓT HΛ(T ) 0

iS,T (3.1)

Since RadΓ ΓT ∩RadΛ ΓS = RadΓ ΓS , the map iS,T is injective. If rk(S) =
rk(T ), then iS,T is the identity map because in this case we have the equalities
RadΓ ΓT = RadΓ ΓS and RadΛ ΓT = RadΛ ΓS . Let G be the torsion of the
group Λ/Γ and notice that HΛ(E) = G, thus the groups HΛ(S), S ⊆ E, are
subgroups of G.

Definition 3.2.2. The layer group LGΛ(S) of a representation Λ is the group

LGΛ(S)
def
= Ext1

(
RadΛ ΓS�ΓS ,Z

)
= Ext1

(
Λ�ΓS ,Z

)
.

We also define the relative layer group

LGΓ(S)
def
= Ext1

(
RadΓ ΓS�ΓS ,Z

)
= Ext1

(
Γ�ΓS ,Z

)
.

For any S ⊂ T there is a natural map πS,T : LGΛ(T )→ LGΛ(S) which is
injective if rk(S) = rk(T ) and surjective if |T | − rk(T ) = |S| − rk(S). We have
a bijection between the connected components of

⋂
s∈S Hs and the elements

of LGΛ(S) since both has cardinality m(S). Moreover, the group HΛ(S) has

cardinality mΛ(S)
mΓ(S) .

The groups LGΛ(S), together with the natural maps between them, deter-
mine the poset of layers of the central toric arrangement described by vi ∈ Λ,
as shown in [Len17a]. The following lemma holds for a pair of modular flats
(see Definition 3.2.1).

Lemma 3.2.3. Let S, T be a pair of modular flats. Then the following equality
holds

HΛ(S) ∩HΛ(T ) = HΛ(S ∩ T ).

Proof. The equality RadΛ ΓS ∩ RadΛ ΓT = RadΛ ΓS ∩ ΓT always holds. The
modularity hypothesis implies that RadΛ ΓS ∩ ΓT = RadΛ ΓS∩T , thus

HΛ(S) ∩HΛ(T ) = RadΛ ΓS ∩ RadΛ ΓT�RadΛ ΓS ∩ RadΛ ΓT ∩ Γ =

= RadΛ ΓS∩T�RadΛ ΓS∩T ∩ Γ = HΛ(S ∩ T )
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The groups KΛ(S)

For any subset S ⊆ E we define the group KΛ(S) = Ext1(HΛ(S),Z). For
S ⊂ T the dual of the diagram (3.1) is

0 KΛ(T ) LGΛ(T ) LGΓ(T ) 0

0 KΛ(S) LGΛ(S) LGΓ(S) 0

pS,T πS,T γS,T (3.2)

whose rows are exact. The map pS,T is always surjective and is an isomorphism
if rk(S) = rk(T ).

Lemma 3.2.4. Let T and S be two flats of a modular matroid (E, rk) and Λ be
a representation of an arithmetic matroid (E, rk,m). The following diagram
is a pushout diagram.

KΛ(S ∨ T ) KΛ(S)

KΛ(T ) KΛ(S ∧ T )
p

Proof. By Lemma 3.2.3 the following diagram is a pullback diagram.

HΛ(S ∧ T ) HΛ(S)

HΛ(T ) HΛ(S ∨ T )

y

Applying the functor Ext1(•,Z) we obtain the claimed diagram.

Let pi : G � Ki, for i = 1, 2, be two quotients of G by the subgroups Li.
We denote the pushout of pi and pj with

Ki,j
def
= Ki tKj�pi(z) ∼ pj(z) = G�Li + Lj ,

together with the two natural surjections si : Ki � Ki,j and sj : Kj � Ki,j .
The pullback of si and sj is

Ki ×Ki,j Kj
def
= {(x, y) ∈ Ki ×Kj | si(x) = sj(y)} = G�Li ∩ Lj .

Lemma 3.2.5. Let G and G′ be two finite abelian groups of the same cardi-
nality, and for i ≤ n let pi : G � Ki and p′i : G′ � K ′i be quotients of G and
G′. We denote with Ki,j (and with K ′i,j) the pushout of pi and pj (respectively,

Cohomology and Combinatorics of Toric Arrangements 89



CHAPTER 3. POSET, TOPOLOGY AND COMBINATORICS

of p′i and p′j). Suppose that there exist bijections fi :Ki
1:1−−→ K ′i, for i ≤ n,

such that for every i, j the diagram

Ki K ′i

G K ′i,j

Kj K ′j

fi

pi

pj

fj

(3.3)

commutes and that the induced map Ki,j → K ′i,j is an isomorphism. Then
there exist a bijection f :G→ G′ such that p′i ◦ f = fi ◦ pi for all i.

Proof. Suppose first n = 1, for all x ∈ K1 the sets p−1
1 (x) and p′−1

1 (f1(x)) has
the same cardinality. We can choose a bijection fx : p−1

1 (x)→ p′−1
1 (f1(x)) for

all x ∈ K1 and define f(y) = fp1(y)(y). This function f is the sought function.

For n > 1, we want to reduce to the case n − 1. Let us fix i 6= j and
consider the pullback Ki×Ki,j Kj of the two maps Ki → Ki,j and Kj → Ki,j .
We want to found a bijection

fi,j : Ki ×Ki,j Kj
1:1−−→ K ′i ×K′i,j K

′
j .

Consider the pullback diagram

G

Ki ×Ki,j Kj Ki

Kj Ki,j

pi

pj

(pi,pj)

and observe that by diagram (3.3) the two map from Ki ×Ki,j Kj to K ′i,j

induced by fi and fj coincides. Notice that |Ki ×Ki,j Kj | =
|Ki||Kj |
|Ki,j | and

so |Ki ×Ki,j Kj | = |K ′i ×K′i,j K
′
j |. Since the pullbacks in the category of Z-

modules and in the category of sets coincide, we have a well defined bijection

fi,j : Ki×Ki,j Kj
1:1−−→ K ′i ×K′i,j K

′
j . The bunch of n− 1 maps {fk}k 6=i,j ∪ {fi,j}

satisfy the hypothesis, so by induction we construct the map f :G→ G′.

Lemma 3.2.6. Let Λ and Λ′ be two representations of the same torsion-free
arithmetic matroid whose underlying matroid is modular. Then the functor KΛ

and KΛ′ are equivalent, i.e. there exist a bijection f :KΛ(E) → KΛ′(E) such
that for every flat S ⊂ E the map f induces a bijection fS :KΛ(S)→ KΛ′(S).
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Proof. We define f by induction on the poset of flats of the underlying matroid.
Since KΛ(∅) = 0 = KΛ′(∅), the base case is done. Suppose that we have
defined fS : KΛ(S)→ KΛ′(S) for every flat S of rank less than k, compatibly
with the restrictions. For each flat T of rank k consider the set {S1, . . . , Sm}
of flats of rank k − 1 contained in T . We apply Lemma 3.2.5 to G = KΛ(T ),
G′ = KΛ′(T ), Ki = KΛ(Si) and K ′i = KΛ′(Si). Lemma 3.2.4 implies Ki,j =
KΛ(Si ∧ Sj) and K ′i,j = KΛ′(Si ∧ Sj), so the compatibility between fSi , fSj
and fSi∧Sj ensure the condition (3.3). Thus we have a bijection fT : KΛ(T )→
KΛ′(T ) compatible with the restrictions. We repeat this procedure for every
flat T of rank k and inductively for every flats.

Theorem 3.2.7. Let (E, rk,m) be a torsion-free arithmetic matroid such that
the underlying matroid (E, rk) is modular. Then the posets of layers of all
representations of the arithmetic matroid are isomorphic.

Proof. An explicit description of the poset of layers of a central toric ar-
rangement is given in [Len17a] in terms of the sets {LG(S)}S⊆E and the
maps πS,T between them. Any two representation Λ and Λ′ contain the
same representation Γ of (E, rk,m), as shown in Section 1.9. Observe that
LGΛ(S) = LGΓ(S)×KΛ(S) as a set and πS,T = (γS,T , pS,T ) as map between
sets. Analogously, LGΛ′(S) = LGΓ(S) × KΛ′(S) and π′S,T = (γS,T , p

′
S,T ).

We observe that KΛ(S) = KΛ(S), where S is the minimal flat containing S.
Consider the bijections fS of Lemma 3.2.6, the maps

Id×fS : LGΓ(S)×KΛ(S)→ LGΓ(S)×KΛ′(S)

are compatible with (γS,T , pS,T ) since fS ◦ pS,T = p′S,T fT for all flats S and T .
Therefore, the two poset of layers are isomorphic.

3.3 Discriminantal toric arrangements

We want to study the continuous deformations of a toric arrangement. Since
the characters group Λ of a toric arrangement is a discrete set, no deforma-
tion can change the set of characters in A, however it is possible that some
hypertorus in the arrangement are translated.

A particular nice type of deformation is the poset isotopy, which is by
definition a deformation that does not change the poset of layers. Two toric
arrangements are said to be poset isotopy equivalent if there exists a poset
isotopy that deforms one into the other. This notion has already been defined
in the context of hyperplane arrangements, see [OT92, Definition 5.27].

There are two natural questions:

1. Are two poset isotopy equivalent toric arrangements diffeomorphic? Are
they homeomorphic? Are they homotopy equivalent?
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(a) M(A) (b) M(A′)

Figure 3.1: Representations of the two arrangements on the compact subtorus.
The red subtori are the hypertori H4 and H ′4.

2. Are two toric arrangements with isomorphic poset of layers and same
characters poset isotopy equivalent?

In this section we will give a negative answer to the second question and a
positive one to the first question.

The following example was suggested by Filippo Callegaro and it is a
counterexample to the second question.

Example 3.3.1. Let A and A′ be the following two toric arrangements in
T 2 = hom(Z2,C∗):

A =

{(
1 1 0 0
0 7 1 1

)
, (1, 1, 1, ζ7)

}
,

A =

{(
1 1 0 0
0 7 1 1

)
, (1, 1, 1, ζ2

7 )

}
,

where ζ is a primitive 7th-root of unity.

These arrangements have the same poset of intersections S and the same
characters χi for i = 1, . . . , 4, therefore by Theorem 2.10.4 their integral co-
homology groups are isomorphic.

Definition 3.3.2. A layer W ∈ S is generic if there exist exactly rkW hy-
pertori containing W .

A poset is generic if all layers in S are generic.

A poset S is nearly generic if there exists a layer W ∈ S such that all
layers W not containing W are generic.
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Clearly, generic arrangements are nearly generic. We fix n characters χi
in Λ and study the poset of layers of A = {(χi, bi)}i=1,...,n, where bi ranges in
C∗.

Theorem 3.3.3. The subset of (C∗)n given by

L(S) = {(bi)i ∈ (C∗)n | S({χi, bi }i=1,...,n) ' S}

is a smooth locally closed subset of (C∗)n. Moreover, if S is nearly generic
then L(S) is connected or empty.

For each b ∈ (C∗)n define the hypertori Hi = Hi(b) = VT (1 − biχi) ⊂ T
for i = 1, . . . , n.

Lemma 3.3.4. For all subset j of (1, . . . , n), the set

Bj = {b ∈ (C∗)n | Hj1(b) ∩ · · · ∩Hjk(b) 6= ∅}

is a connected torus in (C∗)n. Moreover, the intersection of Hj1 , . . . ,Hjk in
T is independent, up to translation, of the point b ∈ Bj.

Proof. Without loss of generality we suppose ji = i, for i = 1, . . . , k and study
the subtorus Y of

(C∗)n+r = SpecC[b±1
1 , . . . , b±1

n , z±1
1 , . . . , z±1

r ]

given by the equations I = (1− biχi)i=1,...,k. The rings morphism

C[b±1
1 , . . . , b±1

n ]→ C[b±1
1 , . . . , b±1

n , z±1
1 , . . . , z±1

r ]�I
induces a projection between the associated tori:

p : Y −→ (C∗)n
(b, z) 7−→ b

The image of the map p is the closed subset B described by the contracted
ideal

Ic = (1− biχi)i=1,...,k ∩ C[b±1
1 , . . . , b±1

n ]

Given that the intersection of H1(b), . . . ,Hk(b) is non-empty if and only if b
is in the image of p, B coincides with Bj . The elimination ideal of a bino-
mial ideal is still binomial: this is a standard fact about binomial ideals and
Gröbner bases (for a proof see [ES96, Corollary 1.3]). In our case, since I is
a binomial ideal, Ic is binomial and the closed subset B is a torus. Moreover,
B is connected since it is the image of the connected torus Y under the map
p.

The fibers of the map p are either empty or a torus. In the latter case the
torus has codimension rk([k]) and m([k]) connected components. The fibre of
a point in B, seen as torus in T , is obtained from any other non-empty fibre
by translations.
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Recall that χi, i = 1, . . . , n, are characters of a r-dimensional torus.

Remark 3.3.5. Let j be a sublist of (1, . . . , n) of cardinality k. The torus Y
is of dimension n + r − k, so the set Bj is of dimension n + r − k − rk j.
In particular, Bj is a hypertorus in (C∗)n if and only if j is a circuit (i.e.
rk j = r − k + 1).

Definition 3.3.6. The centred toric arrangement D(χ1, χ2, . . . , χn) given by
the sets Bj ,for all circuits j, in T ′ = (C∗)n is called discriminantal toric
arrangement associated with the n characters χi, i = 1, . . . , n.

Proof of Theorem 3.3.3. If S is not S({(bi, χi)}i=1,...,n) for some bi, there is
nothing to prove. Otherwise, for each layer W of S, let j(W ) be the ordered
set:

j(W ) = {i | Ai ≤W}
where Ai is the atom of S associated with i.

The condition S({(ai, χi)}i=1,...,n) = S is equivalent to

∀ a ∈ (C∗)n ∃W ∈ S
(
a ∈ Bj ⇔ j ⊆ j(W )

)
By Lemma 3.3.4, the set

L(S) =
⋂

W∈Sr

Bj(W ) \
⋃

j 6⊆j(W )
∀W∈Sr

Bj

is locally closed in (C∗)n and open in the torus
⋂
W∈Sr Bj(W ), hence it is also

smooth.
If W is a generic layer, then we have that Bj = (C∗)n for all sets j included

in j(W ). Let S be a nearly generic poset and W non-generic maximal layer;
then the equality L(S) = Bj(W ) \

⋃
some j Bj holds. If L(S) is nonempty, it is

an irreducible set; it is connected in the Zariski topology and thus also in the
euclidean one.

Example 3.3.7 (continuation of Example 3.3.1). Let S be the poset as-
sociated with A or, equivalently, to A′. The discriminantal toric arrange-
ment associated with ( 1 1 0 0

0 7 1 1 ) is the centred toric arrangement in (C∗)4 =
SpecC[{a±1

i }i≤4] given by the subtori

B3,4 = V(1− a3a
−1
4 )

B1,2,3 = V(1− a1a
−1
2 a7

3)

B1,2,4 = V(1− a1a
−1
2 a7

4)

B1,2,3,4 = V(1− a1a
−1
2 a7

3, 1− a3a
−1
4 ).

All the others Bj are equal to (C∗)4 and consequently the subset L(S) is:

L(S) = B1,2,3 ∩B1,2,4 \B3,4 = {a | a−1
1 a2 = a7

3 = a7
4, a3 6= a4}
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Hence the set L(S) is the disjoint union of six connected 2-dimensional tori.
The two arrangements A and A′ belong to different connected components
so they cannot be deformed one into the other by means of translations. We
have thus shown that A and A′ have the same characters and the same poset
of intersections but are not poset isotopy equivalent, see Definition 3.3.8.

Definition 3.3.8. A deformation of a toric arrangement is a collection of
n hypersurfaces Hi in (C∗)r × B (where B is an algebraic variety over C)
such that for every point b ∈ B the subset Hi ∩ pr−1

2 (b) is a hypertorus in
(C∗)r × {b}. We call Mb the open set (C∗)r × {b} \

⋃
i≤nHi.

A deformation is said to be a poset-preserve deformations if the poset of
layers of Mb does not depend on the point b ∈ B.

We said that two toric arrangements M1,M2 ⊂ T are poset isotopic equiv-
alent if there exists a layers-preserve deformation in T ×B, B connected, such
that the pair (T,M1) (and (T,M2)) is isomorphic to a fiber (T × {b1},Mb1)
(and, respectively, to (T × {b2},Mb2)).

The next result is an analogous to the one on hyperplane arrangements of
Randell [Ran89].

Theorem 3.3.9. If the toric arrangements M,M ′ ⊂ T are poset isotopic
equivalent then M and M ′ are diffeomorphic.

Since the group character Λ of a torus T is a discrete set, two poset isotopy
equivalent arrangements M and M ′ are described by the same characters
χ1, . . . , χn. Let S be the poset of layers of M or equivalently of M ′, the base
B of the deformation can be chosen to be a connected component of L(S).
Call U the closure of B in (C∗)n, clearly U is a connected torus (possibly
translated) of dimension m.

Consider the torus T×U with coordinates (zi, aj) as before, with hypertori
defined by 1 − ajχj(z) = 0 and call M̃ the toric arrangement (T × U) \⋃
i=1,...,n V(1 − ajχj(z)). Choose a component-wise embedding of T × U in

(P1)r × (P1)m. The main result of [DG18b] is that there exists a smooth
project variety W obtained from (P1)r+m by means of a suitable sequence of
blow-ups that contains M̃ . Call WB the inverse image of (P1)r × B through
the natural map W → (P1)r+m.

Let w :WB → B be the composition of the natural map WB → (P1)r ×B
with the projection onto the second component.

Lemma 3.3.10. The map w :WB → B is a projective smooth map.

Proof. The morphism WB → (P1)r × B is projective and smooth by base
change of a blow-up map. The projection (P1)r × B → B is projective and
smooth. So the composition w is smooth and projective.

Lemma 3.3.11. The variety WB admits a Whitney stratification whose open
stratum is naturally isomorphic to M̃ .
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Proof. The complement K of M̃ in WB is a union of some smooth divisors
Ki, i = 1, . . . , k. Moreover K is normal crossing (see [DG18b]). Consider
the stratification given by the closed sets Ki, i = 1, . . . , k. Each stratum
has smooth closure in WB, therefore by [Ran89, Lemma] this is a Whitney
stratification.

To prove of Theorem 3.3.9 we follow the ideas of [Ran89].

Proof of Theorem 3.3.9. We apply the Thom’s isotopy theorem ([GM88, Sec-
tion I Theorem 1.5]) to the map w. Consider the Whitney stratification on
WB of Lemma 3.3.11. Since the poset of layers is the same for every point
b ∈ B, the restriction of the map w :WB → B to every stratum is a submer-
sion. Hence for all b ∈ B, there exists a smooth stratum-preserving map h
such that the diagram below commutes:

B × w−1(b)WB

B

h

w pr1

Thus for all b′ ∈ B, Mb and Mb′ are diffeomorphic.

3.4 A first example

The example that we will expose in this section is a generalization of [CD17,
Example 7.3.2]. Using Theorem 2.6.10 and Theorem 2.10.4 we compute the
cohomology algebra

Let A =
⊕

n∈NA
n be a graded-commutative R-algebra and consider for

each α ∈ A1 the left multiplication δiα : Ai → Ai+1. The pair (A; δα) is a
complex for each α ∈ A1.

Definition 3.4.1. The kth resonance variety of A is

Rk(A)
def
= {α ∈ A1 | Hk(A, δα) 6= 0}.

The kth resonance varieties (with coefficients in the domain R) for a toric
arrangement A is

Rk(A;R)
def
= Rk(H•(M(A);R)).

We will use only the first resonance varietyR1(A, R) of a toric arrangement
A, where R is the ring Z or Q.

In this section we set T = (C∗)2. Consider the arrangements A and Aan in
T defined respectively by the matrices

N =

(
1 0 1
0 1 1

)
and Na

n =

(
1 a a+ 1
0 n n

)
,
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where n is a positive integer and a, a+ 1 are relatively prime to n.
We use Theorem 2.2.16 to calculate the Poincaré polynomials of these

arrangements. The Poincaré polynomial of M(A) is 1 + 5t + 6t2 and that
of M(Aan) is 1 + 5t + (2n + 4)t2. The arithmetic Tutte polynomial of the
arithmetic matroid ([3], rkA,mA) is x2 + x + y, the one of ([3], rkAan ,mAan) is
x2 + x+ ny + 2n− 2. By the way, we have rkA = rkAan .

Theorem 3.4.2. Let n > 5 be a natural number relatively prime to 6, the
arrangements A1

n and A2
n have isomorphic posets of layers but non isomorphic

cohomology algebras with integer coefficients.

From Theorem 2.9.13 the two arrangements A1
n and A2

n have isomorphic
cohomology algebras with rational coefficients. We need a couple of lemmas
to prove Theorem 3.4.2.

Lemma 3.4.3. Let A be a graded-commutative algebra over Q. The first
resonance variety R1(A) is a union (possibly infinite) of planes in A1.

Proof. If α ∈ R1(A), then there exists β ∈ A1 \ αQ such that αβ = 0. Thus,
the plane generated by α and β is contained in R1(A). We obtain the desired
result from the arbitrariness of α ∈ R1(A).

We use coordinates t1, t2 on T and we apply Theorem 2.6.10. The coho-
mology ring of M(A) is generated by the closed forms

ω1 =
1

2πi
d log(1− t1),

ω2 =
1

2πi
d log(1− t2),

ω3 =
1

2πi
d log(1− t1t2),

associated with the hypertori H1, H2, H3 respectively, together with the forms
ψ1 = 1

2πi d log(t1) and ψ2 = 1
2πi d log(t2) (ψ3 is equal to ψ1 +ψ2). The relations

are:
ω1ω2 − ω1ω3 + ω2ω3 − ω3ψ1 = 0,

ω1ψ1 = 0,

ω2ψ2 = 0,

ω3ψ1 + ω3ψ2 = 0.

(3.4)

Lemma 3.4.4. The first resonance variety R1(A;Q) of the complement of A
is the union of the following five planes of H1(M(A);Q);

P1 = 〈ω1, ψ1〉,
P2 = 〈ω2, ψ2〉,
P3 = 〈ω3, ψ1 + ψ2〉,
P4 = 〈ω1 − ω3, ω1 − ω2 − ψ1〉,
P5 = 〈ω2 − ω3, ω1 − ω2 + ψ2〉.
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Proof. The multiplication map f : H1(M(A)) ⊗H1(M(A)) → H2(M(A)) is
surjective and factors through ∧2H1(M(A)). The kernel of

f̃ : ∧2H1(M(A)) −→ H2(M(A))

α ∧ β 7−→ αβ

has dimension 4 =
(

5
2

)
− 6, hence L

def
= P(ker f̃) ' P3 is a linear subspace of

P(∧2H1(M(A))) ' P9.

An element α ∈ H1(M(A)) belongs to the first resonance varieties if and
only if there exists β ∈ H1(M(A)) such that αβ = 0 in H2(M(A)) and
β 6∈ Cα. This implies that α∧β is in ker f̃ and so [α∧β] is in the linear subspace
L. Viceversa if [γ] belongs to L and is a decomposable tensor (i.e. belongs to
gr(2, H1(M(A)))) then [γ] = [α ∧ β] and the plane 〈α, β〉 is contained in the
first resonance variety.

Now we prove that the intersection L ∩ gr(2, H1(M(A))) is the disjoint
union of five points. The relations in eq. (3.4) implies the following factorized
equations

(ω1 − ω3)(ω1 − ω2 − ψ1) = 0,

(ω2 − ω3)(ω1 − ω2 + ψ2) = 0.

These equations ensure that the five different points [Pi], i = 1, . . . , 5 lie in this
intersection. The dimension of the Grassmannian gr(k, V ) is k(dimV − k),
which in our case is equal to 6. Moreover, when k = 2 its degree coincides with
the Catalan number CdimV−2. The formula for the degree of the Plücker em-
bedding of the Grassmannian is due to Schubert in 1886, we refer to [GW11].
Hence gr(2, H1(M(A))) has degree 5 and every P3 ⊂ P9 intersects gr(2, 5)
scheme-theoretically in five points (this is the general case) or in a sub-variety
of positive dimension.

We exclude the latter case by explicit computation. Fix the Plücker co-
ordinates [xij ]1≤i<j≤5 of P9, where {ω1, ω2, ω3, ψ1, ψ2} is the chosen basis of
H1(M(A)). The coordinates of the five planes – in lexicographical order
[x1,2, x1,3, x1,4, . . . , x4,5] – are:

P1 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

P2 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

P3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 0],

P4 = [1,−1, 1, 0, 1, 0, 0,−1, 0, 0],

P5 = [1,−1, 0, 0, 1, 0,−1, 0, 1, 0].

Thus the linear subspace L has equation given by the ideal

I
def
= (x15, x24, x45, x12 + x13, x13 + x23, x13 − x34 + x35).
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The equation of the Grassmannian are given by the Pfaffian of principal minors
of size four of a skew-symmetric matrix. Thus the defining ideal is

J
def
= (x12x34 − x13x24 + x14x23, x12x35 − x13x25 + x15x23,

x12x45 − x14x25 + x15x24, x13x45 − x14x35 + x15x34,

x23x45 − x24x35 + x25x34)

and the sum of the two ideals is

I + J = (x15, x24, x45, x14x25, x14x35, x25x34, x12 + x13, x13 + x23,

x13 − x34 + x35, x12x34 + x14x23, x12x35 − x13x25).

This last ideal is zero dimensional; this computation was done in Sage [The18]
and by hand. Therefore, the intersection of the subspace P(ker f̃) with the
Grassmannian gr(2, H1(M(A))) is (scheme theoretically) the union of five
points. Since we have exhibit five distinct rational points, we obtain that
the first resonance variety R1(A;Q) is the union of the five corresponding
planes.

The map T → T defined by (t1, t2) 7→ (t1, t
a
1t
n
2 ) is a cyclic Galois covering.

For every n and a the above map restricts to a Galois covering πa : M(Aan)→
M(A) with Galois group Z/nZ. The map πa induces an inclusion

π∗a : H•(M(A);Z) ↪→ H•(M(Aan);Z)

of cohomology rings with integer coefficients.

Since n is coprime with 2 and 3, H1(M(Aan);Z) has rank five, equal to that
of H1(M(A);Z). Let α = 1

2πi d log t1 and β = 1
2πi d log t2 be the two canonical

generators of H1(T ;Z) as sub-lattice of H1(M(Aan);Z): then the morphism
π∗a is:

π∗a(ψ1) = α,

π∗a(ψ2) = nβ + aα,

π∗a(ωi) = ωi for i = 1, 2, 3.

Lemma 3.4.5. The first resonance variety R1(Aan;Z) is the union of the
following five sub-lattices of H1(M(Aan);Z):

Q1 = 〈ω1, α〉,
Q2 = 〈ω2, nβ + aα〉,
Q3 = 〈ω3, nβ + (a+ 1)α〉,
Q4 = 〈ω1 − ω3, ω2 − ω1 + α〉,
Q5 = 〈ω2 − ω3, ω1 − ω2 + nβ + aα〉.
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p1 p2 p3 p4 p5 p6 p7

T

H1
H2

H3

Figure 3.2: The Hasse diagram of the poset of layers of A1
7 which coincides

with the one of A2
7

Proof. For i = 1, 2, the lattice H i(M(Aan);Z) is embedded in H i(M(A);Q)
and the first resonance variety R1(Aan;Z) is the intersection

R1(Aan;Z) = R1(A;Q)
⋂
H1(M(Aan);Z).

Now we can complete the proof of Theorem 3.4.2.

Proof of Theorem 3.4.2. The posets of layers S(A1
n) and S(A2

n) are isomorphic
because they have 3 connected hypertori that intersect in n points (1, ζin) for
i = 0, . . . , n−1 (where ζn is a nth primitive root of unity). The Hasse diagram
of the posets of layers in the case n = 7 is represented in Figure 3.2. Suppose
that there exists an isomorphism ϕ :H•(M(A1

n);Z)→ H•(M(A2
n);Z); then ϕ

must map R1(A1
n;Z) isomorphically into R1(A2

n;Z). Furthermore, ϕ sends
each component Q1

i into another component Q2
f(i). For each (i, j), consider

the cardinality ca(i, j) of the torsion subgroup of H1(M(Aan);Z)/〈Qai , Qaj 〉 for
a = 1, 2. The value of ca(i, j) is n when (i, j) = (1, 2), (1, 3), (2, 3), (4, 5) and 1
otherwise, both for a = 1 and a = 2.Thus, ϕ maps Q1

1, Q
1
2, Q

1
3 into Q2

1, Q
2
2, Q

2
3

in some order. For a = 1, 2 the following equality holds

H1((C∗)2;Z) = Rad
( ⋂

1≤i<j≤3

〈Qai , Qaj 〉
)
,

hence ϕ preserves the sub-lattice L
def
= H1((C∗)2;Z) = 〈α, β〉. Now we claim

that there is no linear map ϕ|L : L→ L that sends the three sub-lattices

{Q1
1 ∩ L,Q1

2 ∩ L,Q1
3 ∩ L }

into {Q2
1 ∩ L,Q2

2 ∩ L,Q2
3 ∩ L } in some order. The three one-dimensional lat-

tices are Q1
1∩L = 〈α〉, Q1

2∩L = 〈nβ+α〉, Q1
3∩L = 〈nβ+2α〉 for the arrange-

ment A1
n and the lattices Q2

1∩L = 〈α〉, Q2
2∩L = 〈nβ+2α〉, Q2

3∩L = 〈nβ+3α〉
for the arrangement A2

n. In the case a = 1 we can find generators for two of
those lattices (e.g. −α and nβ + α) such that their sum belongs to the sub-
lattice nL. This property does not hold for the arrangement A2

n: indeed
±α± (nβ+ 2α),±α± (nβ+ 3α),±(nβ+ 2α)± (nβ+ 3α) are not in nL (here
we use n 6= 5). Thus, we conclude that the map ϕ cannot exist.
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3.5 A second example

The following example is constructed by looking for two toric arrangements
with the following properties. The underline matroid is not a modular ma-
troid. The two toric arrangements are coverings of the same toric arrangement
with non cyclic Galois group. The smallest example of such arrangements must
have rank at least three and four hypertori.

Consider the three matrices

N =

1 1 1 3
0 5 0 5
0 0 5 5

 , N ′ =

1 4 1 6
0 5 0 5
0 0 5 5

 , N ′′ =

1 0 0 1
0 1 0 1
0 0 1 1

 .

These integer matrices describe three central toric arrangements A, A′ and
A′′ in T = (C∗)3. Both A and A′ are Galois coverings of A′′ with Galois group
Z5 × Z5.

Let ([4], rk,m) be the arithmetic matroid defined by rk(S) = min(|S|, 3)
and by

m(S) =


1 if |S| ≤ 1

5 if |S| = 2

25 if |S| ≥ 3

.

Remark 3.5.1. If we identify Ext1(Z2
5,Z3) ' (Z2

5)3 using the canonical basis of
Z3 and if we choose as representation of (E, rk,m) the columns of the matrix
N ′′, then the representations N and N ′ are classified by the two different
elements [(

−1 0 1
−1 1 0

)]
,

[(
−1 0 1
−4 1 0

)]
of C, respectively.

Let M be the matroid over Z defined by

M(S) =


Z3 if |S| = 0

Z2 if |S| = 1

Z× Z/5Z if |S| = 2

Z/5Z× Z/5Z if |S| ≥ 3

.

Theorem 3.5.2. The matrices N and N ′ are representations of the arithmetic
matroid ([4], rk,m) and of the matroid M over Z. Moreover, the posets S(A)
and S(A′) are not isomorphic.

Proof. The first assertion follows from the Smith normal form of N [S] and
of N ′[S], the matrices obtained from N and N ′ by taking only the columns
indexed by S. The second one follows from Lemma 3.5.3 below.
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The Poincaré polynomials of the complements M(A) and M(A′) coincide
with

P (t) = P ′(t) = 110t3 + 41t2 + 7t+ 1.

The one of M(A′′) is P ′′(t) = 14t3 + 17t2 + 7t + 1. The Tutte polynomial of
the arithmetic matroid ([4], rk,m) is x3 + x2 + 25x + 25y + 48 and the one
associated with N ′′ is x3 + x2 + x+ y.

Define a∨b as the set of all least upper bound of a, b in the poset of layers.
Consider the following property

∃ {i, j} ∪ {k, l} = [4]∀ a ∈ i ∨ j, ∀ b ∈ k ∨ l (a ∨ b 6= ∅). (P)

In other words, the property (P) for S(A) (or for S(A′)) says that there exists
a choice of two hypertori Hi, Hj in A (resp. in A′) such that every connected
component of Hi ∩Hj intersects every connected component of Hk ∩Hl.

Lemma 3.5.3. The property (P) holds for S(A) but not for S(A′).

Proof. We first discuss the poset S(A′). Consider (i, j, k, l) = (1, 2, 3, 4), there
are five possible joins 1 ∨ 2 that correspond to the five layers

aµ :

{
x = 1

y = µ
,

where µ runs over all the fifth roots of unity. Analogously, the joins of 3 and
4 are the five layers

bζ :

{
x = z−5

y = ζz5
,

where ζ runs over all the fifth roots of unity. A join aµ ∨ bζ exists if and only
if the system 

x = 1

y = µ

z5 = 1

y = ζz5

. (3.5)

admits a solution. If ζ = µ, then the system has five solutions, otherwise there
are no solutions. In particular, the property (P) does not hold for the poset
S(A′).

The following case by case analysis shows that the three systems for the
arrangement A analogous to (3.5) have always a unique solution:

x = 1

y = µ

xz5 = 1

xyz3 = ζ

,


x = 1

z = µ

xy5 = 1

x2y3z = ζ

,


x = 1

yz = µ

xy5 = 1

y = ζz

.
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Proposition 3.5.4. The spaces M(A) and M(A′) have non-isomorphic co-
homology algebras with rational coefficients, i.e.

H•(M(A);Q) 6' H•(M(A′);Q).

Proof. Suppose that an isomorphism ϕ : H•(M(A);Q) → H•(M(A′);Q) ex-
ists. We claim that ϕ(H•(T ;Q)) = H•(T ;Q) where T is the ambient torus.
The proof of the claim is analogous to the one of Lemma 3.4.4. The first
resonance variety of M(A) and M(A′) are the union of the four planes

Q1 = 〈ω1, α〉, Q′1 = 〈ω1, α〉,
Q2 = 〈ω2, 4α+ 5β〉, Q′2 = 〈ω2, α+ 5β〉,
Q3 = 〈ω3, α+ 5γ〉, Q′3 = 〈ω3, α+ 5γ〉,
Q4 = 〈ω4, 3α+ 5β + 5γ〉, Q′4 = 〈ω4, 6α+ 5β + 5γ〉,

since the unique relations in cohomology of degree two are ωiψi = 0 (see The-
orem 2.9.13). Thus there exists a bijection f : [4]→ [4] such that ϕ sends Qi
into Q′f(i), for i = 1, . . . , 4. Since H1(T ;Q) =

⋂4
i=1〈Qj〉j 6=i in H1(M(A);Q)

and H1(T ;Q) =
⋂4
i=1〈Q′j〉j 6=i in H1(M(A′);Q), the map ϕ preserves the sub-

space H•(T ;Q). Consider now the quotients S• = H•(M(A);Q)/(H1(T ;Q))
and S′• = H•(M(A′);Q)/(H1(T ;Q)). The multiplication map S1 × S2 → S3

has rank 51, instead the map S′1 × S′2 → S′3 has rank 43. The rank of the
two multiplication maps can be calculated with a computer. Therefore the
map ϕ cannot be an isomorphism.

The difference between the rank of S1×S2 → S3 and S′1×S′2 → S′3 can
be explained intuitively.

For every I ⊆ [4], the set of connected components of ∩i∈IHi has a natural
group structure, induced by the ambient torus. We call this group LG(I).
Moreover given I ⊂ J ⊆ [4], there exists a natural group homomorphism
π : LG(J) → LG(I) that maps a connected component W to the unique
connected component of

⋂
i∈I Hi containing W . In our case, since

⋂
j 6=iHj =⋂

j∈[4]Hj for all i ∈ [4], the map LG([4])→ LG([4] \ {i}) is the identity. Call
πi,j : LG([4])→ LG({i, j}) the canonical projection.

Given I and J of cardinality two, there exists an isomorphism ϕJI such
that the following diagram commutes

LG([4]) LG(I)

LG(J)

πI

πJ
ϕJI

if and only if kerπI = kerπJ . We compute all these kernels both for A
and A′ and we report it in Table 3.1, where e1 and e2 are two generators of
LG([4]) ' Z/5Z× Z/5Z.
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Table 3.1: For every set I ⊂ [4], |I| = 2, we describe the kernel of πI and of
π′I .

I kerπI kerπ′I
{1, 2} 〈e2〉 〈e2〉
{1, 3} 〈e1〉 〈e1〉
{1, 4} 〈e1 − e2〉 〈e1 − e2〉
{2, 3} 〈4e1 − e2〉 〈e1 − e2〉
{2, 4} 〈2e1 − e2〉 〈3e1 − e2〉
{3, 4} 〈3e1 − e2〉 〈e2〉

From Theorem 2.9.13, we have that S• is generated by the image of ωi :=
ωHi,{i} for i ∈ [4], of ωa,I for |I| = 2 and a ∈ LG(I), and of ωb,[4]\{i} for i ∈ [4]
and b ∈ LG([4]). The linear relations are

4∑
i=1

(−1)iωb,[4]\{i} = 0

for each b ∈ LG([4]). The product S1 × S2 → S3 is defined by

ωiωa,{j,k} = (−1)l({i},{j,k})
∑

b∈π−1
j,k(a)

ωb,{i,j,k}.

The analogous definitions and formulas hold for the arrangement A′. In the
algebra S′• the following relations hold for a ∈ LG′({1, 2}) and c ∈ LG′({1, 4}):

(ω′1 − ω′2 + ω′3 − ω′4)(ω′a,{1,2} + ω′
ϕ3,4

1,2(a),{3,4}) = 0,

(ω′1 + ω′2 − ω′3 − ω′4)(ω′c,{1,4} + ω′
ϕ2,3

1,4(c),{2,3}) = 0,

since kerπ′1,2 = kerπ′3,4 and kerπ′1,4 = kerπ′2,3. These equations give ten
independent relations, the corresponding relations in the algebra S• are only
two:

(ω1 − ω2 + ω3 − ω4)

( ∑
a∈LG({1,2})

ωa,{1,2} +
∑

b∈LG({3,4})

ωb,{3,4}

)
= 0,

(ω1 + ω2 − ω3 − ω4)

( ∑
c∈LG({1,4})

ωc,{1,4} +
∑

d∈LG({2,3})

ωd,{2,3}

)
= 0,

since kerπ1,2 6= kerπ3,4 and kerπ1,4 6= kerπ2,3.
By [DR18, Theorem E], the G-semimatroids described by N and N ′ are

different.
D’Al̀ı and Delucchi proved that both posets are homology Cohen-Macaulay

over fields of all but a finite number of characteristics [DD18]. It was conjec-
tured that the arithmetic independence poset is shellable. Notice that the non-
arithmetic versions of these posets (the poset of flats and the independence
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poset of an ordinary matroid) are shellable, and therefore Cohen-Macaulay
over fields of every characteristic.

Let M be the arithmetic matroid associated with the matrix N , by using
the algorithm described [PP19b], we find that M has 13 non-equivalent es-
sential representation. These 13 representations give rise to 3 non-isomorphic
posets of layers. These 3 posets are realized by the matrices N , N ′ and1 2 2 1

0 5 0 5
0 0 5 −5

 .

The homology of the order complex of the poset of layers (with the bottom
element removed) is equal to (0,Z5,Z48) in all 3 cases. In particular, these
posets of layers are not Cohen-Macaulay in characteristic 5, and therefore are
not shellable. However, posets of layers of toric arrangements associated with
root systems were proved to be shellable [DGP17, Pao18].

The arithmetic independence posets of the 13 representations of M are
pairwise isomorphic. Their order complexes (with the bottom element re-
moved) have homology (0,Z5,Z73). Therefore these posets are not Cohen-
Macaulay in characteristic 5, and are not shellable.

Our observations settle a number of different conjectures about the posets
associated with a toric arrangement, but also highlight the following problem.

Question 3.5.5. Let M be an arithmetic matroid. Are the arithmetic inde-
pendence posets of the representations of M always pairwise isomorphic?
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Chapter 4

Cohomology of
Configurations Spaces

We study the rational cohomology of the configuration space of unordered
points on closed orientable surfaces. In particular, we compute the mixed
Hodge structure on the cohomology and the action of the mapping class group,
by finding a series with coefficients in the Grothendieck ring of sp(2g) that
describes explicitly the decomposition of the cohomology into irreducible rep-
resentations. From that we deduce the mixed Hodge numbers and the Betti
numbers, obtaining a formula without cancellations. In the case of the 2-torus
we compute the structure of the cohomology ring and we prove the formal-
ity over the rationals. We also conjecture the mixed Hodge numbers of the
ordered configuration spaces on the 2-torus.

The results of Section 4.3 are essentially new and unpublished. Sections 4.2
and 4.4 appear in [Pag19c] and Sections 4.5 to 4.7 are taken from [Pag19a].
Some minor results also appear in [Pag18c].

4.1 Introduction

Configuration spaces of points are related to physics (state spaces of non-
colliding particles on a manifold), robotics (motion planning), knot theory,
and topology. Configuration spaces give invariants of the homeomorphism
type of the base space. In the algebraic setting, configuration spaces are open
in the moduli spaces of points.

The ordered configuration space of n points in a topological space X is

Fn(X) = {(p1, . . . , pn) ∈ Xn | pi 6= pj}.

We are interested in the unordered configuration space of X, that is

Cn(X) = {I ⊂ X | |I| = n} = Fn(X)�Sn
.
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Since the literature is very extensive, we compare our work only with the
main results on the (co-)homology of configuration spaces. The first com-
putation of the cohomology algebra of configuration spaces is due to Arnold
[Arn69, Arn70] in the case of R2. This result has been generalized by Co-
hen, Lada, and May [CLM76] to the configuration space of Rn and later by
Goresky and Macpherson [GM88]. Partially additive results have been ob-
tained: by Bödigheimer and Cohen [BC88] for once-punctured oriented sur-
faces, by the same authors and Taylor [BCT89] for odd dimensional manifolds,
and by Drummond-Cole and Knudsen [DCK17] for surfaces in general. How-
ever there is no description of the ring structure. The Betti numbers Cn(X)
are described in the following cases: for X = P2(R) by Wang [Wan02], for X
a sphere by Salvatore [Sal04], for X = P2(C) by Felix and Tanré [FT05] and
for elliptic curves by Maguire and Schiessl [Mag16, Sch16].

The Euler characteristic of the configuration spaces of any even-dimen-
sional orientable closed manifold M was computed by Felix and Thomas in
[FT00] by the following formula:

∞∑
n=0

χ(Cn(M))un = (1 + u)χ(M).

In the case of surfaces, this formula can be obtained from eq. (4.21) by setting
t = s = −1 and taking the dimension of the representations.

Results

We compute the rational cohomology of Cn(Σg) where Σg is the Riemann
surface of genus g. We improve the previous results on configuration spaces
on surfaces in three ways, see Theorem 4.7.11:

• we determine the mixed hodge numbers,

• we describe the action of the mapping class group on the gradation of
the cohomology,

• we obtain a formula for Betti numbers without cancellations.

We also improve the previous results on configuration spaces in an elliptic
curve in three ways.

• We describe the action of the mapping class group on the cohomology
(no gradation for the torus), see Theorem 4.4.5.

• We give an equivariant description of the ring structure of the cohomol-
ogy (Theorem 4.4.11).

• The formality result over the rationals is proven in Corollary 4.4.13.
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Techniques

The main tools used are the Križ model and representation theory. The Križ
model [Kri94, Tot96, FM94] is the differential graded commutative algebra
over Q (for short DGCA)

A•,•(X,n) = H•(X)⊗n ⊗ ∧• V�I,

where V is the Q-vector space with basis {Gi,j}i<j and

I = (Gi,jGj,k +Gj,kGi,k +Gi,kGi,j , Gi,j(xi − xj))i<j<k∈[n]
x∈H•(X)

,

where the element xi is 1⊗ 1⊗ · · ·⊗x⊗ · · ·⊗ 1 ∈ H•(X)⊗n with x in position
i. The differential d on A(X,n) is defined by d(xi) = 0 and by d(Gi,j) = ∆i,j ,

where ∆i,j is the class of the diagonal in H•(X)⊗2 i,j
↪−→ H•(X)⊗n. The bide-

grees of the generators are |xi| = (|x|, 0) and |Gi,j | = (0, 2d − 1), where
d = dimCX. There is an isomorphism of bigraded algebras H(A(X,n), d) '
H(Fn(X)), where the bigradation on the cohomology is given by the mixed
Hodge structure. This model was generalized by Bibby [Bib16a] and Dupont
[Dup16a] to general arrangements of hypersurfaces in smooth projective vari-
eties.

Remark 4.1.1. The model A•,• coincides with the Križ model E•• introduced
in [Kri94] up to shifting the degrees, i.e.

Ap,q ∼= Ep+qq .

The dga E•• is a rational model for X, as shown in [Kri94, Theorem 1.1].

The symmetric group Sn acts on the algebra A(X,n) and the Sn-invariant
subalgebra is a model for the space Cn(X), indeed we have the isomorphism
H(A(X,n)Sn , d) ' H•(Cn(X)). We use the results of [AAB14, Aza15] that
describes the action of the symmetric group on the Križ model.

Let Σg be a Riemann surface, Γg be its mapping class group, and Ig be
the Torelli subgroup. Recall the short exact sequence

0→ Ig → Γg → Sp(2g)→ 0.

The natural action of the subgroup Ig on H i(Cn(Σg)) is not trivial, but the in-
duced action on grF• H

•(Cn(Σg)) is trivial. Indeed,we have grF• H
•(Cn(Σg)) '

H•(A(Σg, n)Sn , d) functorially, hence the isomorphism is Γg-equivariant. The
action of Γg on the algebra A(Σg, n)Sn is clearly symplectic thus Ig acts triv-
ially on grF• H

•(Cn(Σg)).
The action of the Torelli group is studied in [Bia19] in the case of once

punctured surfaces and it is non trivial on H2(Cn(Σg \ { ∗ })). From Theo-
rem 4.7.11, we deduced that the filtration F• is trivial in cohomological de-
grees 0, 1, 2 and also in degree 3 if g = 2. Thus in this cases the action of the
mapping class group is symplectic.
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The case g = 1 is special and we denote Σ1 by E. Indeed, I1 is the trivial
group and the action of the Torelli group is symplectic. Moreover, the Križ
model splits as dga

A•,•(E,n) ∼= B•,•(n)⊗Q D•,0

in equivariant way. Where B(n) is the model for the space

Mn(E)
def
= { (p1, . . . , pn) ∈ Fn(E) |

∑
pi = 0 } .

and D ∼= H(E;Q). Notice that there exists a non canonical isomorphism
Fn ∼= E ×Mn(E).

The mixed Hodge structure on the cohomology of algebraic varieties defines
a bigrading compatible with the algebra structure (see [Del75, p.81] or [Voi07,
Theorem 8.35]). In our case the bigrading given by the mixed Hodge structure
coincides with the one given by the Leray spectral sequence as shown by
Totaro [Tot96, Theorem 3] and by Gorinov [Gor17]. Explicitly, the subspace
Ap,q(X,n) has weight p+ 2q and degree p+ q.

Plan

In Section 4.2 we recall the Križ model for general surfaces. In Section 4.3 we
specialize the model for genus one and we improve the result on the decompo-
sition of the Križ model into irreducible representations, see Theorem 4.3.2.
We also provide Conjectures 4.3.10 and 4.3.19 for the sums of mixed Hodge
number in the ordered case. The unordered configuration spaces for genus
one surfacesis described in Section 4.4, where the mixed Hodge numbers, the
action of the mapping class group, the ring structure of the cohomology and
formality result are discussed. In the last three sections we focus on the un-
ordered configuration space for arbitrary genus. We present a simple model
Section 4.5 and we study it as a representation of the symplectic group Sec-
tion 4.6. Using these results we prove the main Theorem 4.7.11 in Section 4.7.

4.2 Representation theory on the Križ model

We study the action of the symmetric group Sn and of SL2g(Q) on the algebras
A. Those actions are given by a geometric action on Fn(Σg). For a general
reference on the representation theory of the Lie groups and of the Lie algebras
we refer to [Hal15] and to [FH91], respectively. The cases of SL2(C) and of
sl(2;C) can be found in [GW09].

Theorem 4.2.1 (Theorem 1.1 [Kri94]). Let X be a smooth projective variety
over the complex C. The dga A(X,n) is a model for the configuration space
Fn(X).
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Dimension formula and the braid hyperplane arrangement

The algebra A0,•(Σg, n) coincides with the cohomology of the braid hyperplane
arrangement; we use this fact to compute the dimension of Ap,q(Σg, n).

The dimension of the cohomology of the braid hyperplane arrangement
Hk(M(AHn−1)) coincides with

[
n

n−k
]
, the Stirling number of first kind. The

Poincaré polynomial of the complement is

Pn−1(t) =
n−1∏
q=1

(1 + qt) =
n−1∑
q=0

[
n

n− q

]
tq

by [Arn69, Corollary 2], while the (arithmetic) Tutte polynomial Tn(x, y) was
calculated in [GS96, Theorem 5.1] and has exponential generating function

∞∑
n=1

Tn(x, y)tn

n!
=

(∑∞
n=0( t

y−1)n y
(n2)
n!

)(y−1)(x−1)

− 1

x− 1
. (4.1)

The (arithmetic) Tutte polynomial can be computed easily by using the
recursion formula in [Pak93]:

Tn+1(x, y) =
n∑
k=1

(
n− 1

k − 1

)
(x+ y + y2 + · · ·+ yk−1)Tk(1, y)Tn+1−k(x, y).

For any hyperplane arrangement AH the Poincaré polynomial is a specializa-
tion of the Tutte polynomial, e.g. for the braid arrangement we have:

Pn−1(x) = xn−1Tn

(
1

x
, 0

)
.

Proposition 4.2.2. The dimension of Ap,q(Σg, n) is
[
n
n−q
](

2g(n−q)
p

)
. More-

over, its Hilbert polynomial is

PA(Σg ,n)(t, s) =
n−1∏
q=0

((1 + t)2g + qs).

Proof. Notice that

Ap,q(Σg, n) =
⊕

W∈Sn, rk(W )=q

Hp(W )⊗Hq(M(AH [W ]);Q),
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where Sn is the poset of layers that coincides with the poset of the partitions
of [n] [Bib16b, Section 3.2]. By considering only the dimensions, we have

dim Ap,q(Σg, n) =
∑

rk(W )=q

dimHp(Σn−q
g ) dimHq(M(AH [W ]);Q)

=

(
2g(n− q)

p

)
dimHq(M(AHn−1);Q)

=

[
n

n− q

](
2g(n− q)

p

)
.

Finally, we have

PA(Σg ,n)(t, s) =
∑
p,q

dim Ap,q(Σg, n)tpsq

=
∑
p,q

[
n

n− q

](
2g(n− q)

p

)
tpsq

=
∑
q

[
n

n− q

]
(1 + t)2g(n−q)sq

=

n−1∏
q=0

((1 + t)2g + qs).

This completes the proof.

Definition of the actions

Consider the action of Sn on Fn defined by

σ−1 · (p1, . . . , pn) = (pσ(1), . . . , pσ(n))

for all σ ∈ Sn. This induces an action on A defined by

σ−1((al)i) = (al)σ(i),

σ−1((bl)i) = (bl)σ(i),

σ−1(Gi,j) = Gσ(i),σ(j)

for all 1 ≤ i < j ≤ n, l = 1, . . . , g and all σ ∈ Sn. The mapping class group
Γg of the surface Σg acts naturally on Fn(Σg) and on Cn(Σg).

Let f be an automorphism of Σg, the map induces the following vertical
morphisms

Fn(Σg) Σn
g

Fn(Σg) Σn
g

fn|Fn fn
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and by functoriality of the Leray spectral sequence it induces the action
of Γg on A(Σg, n). We explicitly describe this action on the generators Gi,j ,
(al)i, and (bl)i: since fn :En → En fixes the divisor {pi = pj}, then f ·Gi,j =
Gi,j . The other generators belongs to A1,0(Σg, n) = H1(Σn

g ) ∼= H1(Σg)
⊕n.

Therefore the action of Γg is symplectic and it factors through Sp2g(Z). On

A1,0(Σg, n) it coincides with the diagonal action on H1(Σg)
⊕n.

It is clear that the action of Sn and the one of Sp2g(Z) commute.

Decomposition into Sn-representations

We recall a result of [AAB14, Theorem 3.15] on the decomposition of A(Σg, n)
into Sn-modules.

Let λ ` n be a partition of the number n, i.e. λ = (λ1, . . . , λl) such that
λi ≥ λi+1 and

∑l
i=1 λi = n. Let B be the ordered basis of H•(Σg;Z) whose

elements are 1, a1, . . . , ag, b1, . . . , bg, [pg], where [pg] is the fundamental class
of a point in Σg. We denote the total order on B using the symbol �.

Definition 4.2.3. A label s of the partition λ is a function s : { 1, . . . , l } → B,
i.e. we label each block with an element of the chosen basis B, such that if
λi = λi+1 then s(i) � s(i+ 1) .

Let Ck be the cyclic group of order k. For any partition λ ` n define Cλ
as the product of the cyclic groups Cλi for i = 1, . . . , t. It acts on {1, . . . , n}
in the natural way. Consider a labelled partition (λ, s) and define Nλ,s as the
group that permutes the blocks of λ with the same size and the same labels.
The group Nλ,s is a product of symmetric groups. Call Zλ,s the semidirect
product Cλ oNλ,s.

Example 4.2.4. We give an example for g = 1, let (λ, s) be the labelled
partition λ = (5, 5, 5, 5, 1, 1, 1) ` 23 and s = (z, z, z, 1, a, a, a), where z :=
[p1]. The group Cλ ∼= (Z5)4 < S23 is generated by the cycles (1, 2, 3, 4, 5),
(6, 7, 8, 9, 10), (11, 12, 13, 14, 15), and (16, 17, 18, 19, 20). The subgroup Nλ,s

∼=
S3 ×S3 is generated by the following permutations:

(1, 6)(2, 7)(3, 8)(4, 9)(5, 10),

(1, 11)(2, 12)(3, 13)(4, 14)(5, 15),

(21, 22),

(21, 23).

Finally, Zλ,s is a group isomorphic to (Z5 oS3)× Z5 ×S3.

Given two representations V,W of two groups G and H respectively, define
the tensor representation V �W of G ×H by the vector space V ⊗W with
the action (g, h)(v ⊗ w) = g(v)⊗ h(w).
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We define the following one-dimensional representations. Let ϕn be a
faithful character of the cyclic group on n elements and ϕλ the character of
Cλ ∼= Cλ1 × · · · × Cλt given by

ϕλ
def
= sgnn |Cλ · (ϕλ1 � · · ·� ϕλr).

Define the degree deg of an element in B by its degree in the algebra
H•(Σg). Let αλ,s be the one dimensional representation of Nλ,s

∼= Sµ1 ×· · ·×
Sµl defined on generators by

αλ,s(σ)
def
= (−1)λi+deg s(λi)+1,

where σ is the permutation that exchange two blocks λi and λj with the
same labels. In other words, the representation αλ,s restricted to Sµj is the

character sgn
⊗(λi+deg s(λi)+1)
Sµj

, where λi is any block exchanged by Sµj . Let

ξλ,s be the one dimensional representation of Zλ,s such that Res
Zλ,s
Cλ

ξλ,s = ϕλ

and Res
Zλ,s
Nλ,s

ξλ,s = αλ,s.

We define |λ| = n − t for a partition λ = (λ1, . . . , λt) of n and for a label
s the numbers |s| =

∑t
i=1 deg s(λi).

Compares the following results with [DPR14].

Theorem 4.2.5 ([AAB14, Theorem 3.15]). For each labelled partition (λ, s)
there exist a Sn-representations A(λ, s) ⊂ Ap,q(Σg, n), with p = |s| and q =
|λ|, such that

Ap,q(Σg, n) =
⊕
|λ|=q
|s|=p

A(λ, s)

as Sn-representation. Moreover:

A(λ, s)⊗Q C ' IndSn
Zλ,s

ξλ,s.

Example 4.2.6. Consider the marked partition (λ, s) of Example 4.2.4, the
characters are shown in the following table.

(1, 2, 3, 4, 5) (16, 17, 18, 19, 20) (1, 6)(2, 7)(3, 8)(4, 9)(5, 10) (21, 22)

ϕ ζ5 ζ5

α 1 −1

ξ ζ5 ζ5 1 −1

The action of Sn × Sp2g(Q)

Now we describe the algebra A(Σg, n) as representation of Sn × Sp2g(Q).
A nice formula holds:

∧p(V �W ) =
⊕
λ`p

Sλ V � Sλ′W, (4.2)
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where λ′ is the conjugate partition of λ and Sλ is the Schur functor, see [FH91]
for a general reference. A proof of eq. (4.2) can be found in [Wey03, Corollary
2.3.3] or [FH91, Exercise 6.11(b)]. Moreover, the dimension of Sλ V is

dimSλV = sλ(1, · · · , 1︸ ︷︷ ︸
dimV

) =
∏

1≤i<j≤dimV

λi − λj + i− j
i− j

, (4.3)

where sλ is the Schur polynomial as proven in [FH91, Theorem 6.3].

The root system associated with the Lie group Sp2g(Q) is of type Cg. The
roots are ±2ei for 1 ≤ i ≤ g and ±ei ± ej for 1 ≤ i < j ≤ g, where ei are the
canonical basis of Rg. We choose as positive roots the vectors 2ai for 1 ≤ i ≤ g
and ei ± ej for 1 ≤ i < j ≤ g and so the simple roots are αi := ei − ei+1 for
1 ≤ i ≤ g − 1 and αg := 2eg. The fundamental weights are ωi =

∑i
j=1 ej for

1 ≤ i ≤ g and the dominant weights are
∑g

i=1 niωi for ni ∈ N. The irreducible
finite-dimensional representations of sp(2g) are Vω for all dominant weights ω.

Lemma 4.2.7. The first row of the algebra A(Σg, n) decomposes as follows:

Ap,0(Σg, n) ∼=
⊕
λ`p

Sλ(IndSn
Sn−1

1n−1)� Sλ′(Vω1).

Proof. It is easy to see that

A•,0(Σg, n) = ∧•H1(Σn
g ) ∼= ∧p

(
IndSn

Sn−1
1n−1 �H

1(Σg)
)

as representations of Sn × Sp2g(Q). Since H1(Σg) = Vω1 , eq. (4.2) completes
the proof.

Let T ' (Q∗)g ⊂ Sp2g(Q) be the maximal splitting torus of diagonal
matrices. For a weight ω ∈ Hom(T,Q∗) = Zg, we define the one dimensional
representation V (ω) of T by t · v = ω(t)v.

Definition 4.2.8. The weight of a label s of the partition λ is the vector
ω(s) ∈ Zg given by (ω(s))i = |{ j | s(λj) = ai }| − |{ j | s(λj) = bi }|.

Theorem 4.2.9. The algebra A(Σg, n) decomposes as representation of Sn×T
in the following way:

Ap,q(Σg, n) ∼=
⊕
|λ|=q
|s|=p

A(λ, s)� V (ω(s)).

Proof. It follows from Theorem 4.2.5 and the observation that A(λ, s) is pre-
served by the action of T .
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Let U be the subgroup of Sp2g(Q) whose elements are the matrices upper
triangular matrices with diagonal entries equal to one. We call an vector v
in a representation V of Sp2g(Q) an highest weight vector if U · v = v and
t · v = ω(t)v for all t ∈ T . In this case we said that the vector v has weight ω.
For any weight ω ∈ Zg and any partition λ, define Upλ,ω as the set of highest

weight vectors of weight ω of
⊕
|s|=p A(λ, s). It is not easy to compute Upλ,ω,

however it is useful for decomposing A(Σg, n).

Theorem 4.2.10. The algebra A(Σg, n) decomposes as representation of the
group Sn × Sp2g(Q) as follows:

Ap,q(Σg, n) =
⊕
|λ|=q
ω∈Ng

Upλ,ω � Vω,

where ω =
∑g

i=1 niωi runs over all dominants weights.

Proof. Since Ap,q(Σg, n) is finite dimensional, it decomposes as direct sums of
highest weight representations indexes by the highest weight vectors.

4.3 Genus one: ordered configurations

The case of genus g = 1 has two advantages: we know a lot about the repre-
sentation theory of SL2(Q) and the group structure on E provides a decom-
position of A(E,n) as tensor product of two algebras.

Decomposition into Sn × SL2(Q)-representations

Recall also that in the case g = 1 the action of the mapping class group Γ1 is
symplectic. It follows trivially by the following classical result.

Theorem 4.3.1 (Theorem 2.5 [FM12]). The mapping class group Γ1 of the
torus is isomorphic to SL2(Z) and the isomorphism is given by the natural
action of Γ1 on H1(E;Z).

For g = 1 we have Sp2(Q) = SL2(Q). Since all dominant weights are of the
form kω1 for k ∈ N, in this section we call the irreducible representations of
SL2(Q) by Vk := Vkω1 . Let T = {Ht } ∼= Q∗ be the maximal torus in SL2(Q)
generated by the diagonal matrices Ht =

(
t 0
0 t−1

)
. Let V1 be the irreducible

representation Q2 with the standard action of matrix-vector multiplication
and let Vk = Sk V1 be the irreducible representations given by the symmetric
powers of V1. The representation Vk has dimension k+ 1 and can be view as
Q[x, y]k, i.e. the vector space of homogeneous polynomials in two variables.
The action of T on the monomials is given by Ht ·xayk−a = t2a−kxayk−a, thus
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Vk decomposes, as representations of T

Vk =
k⊕
a=0

V (2a− k), (4.4)

where V (2a− k) is the subspace where Ht acts with character t2a−k, i.e. the
subspace generated by xayk−a. Since the group SL2(Q) is dense in SL2(C),
each irreducible regular representation of SL2(Q) is isomorphic to Vk for some
k ∈ N. For a proof see [GW09, Proposition 2.3.5] and use a density reasoning.

As a consequence we can decompose a representation V of SL2(Q) using
its decomposition V = ⊕a∈ZV (a)⊕na as representation of T : indeed V ∼=
⊕k∈NV⊕mkk , where mk = nk − nk+2. By setting V = Vm ⊗ Vn, we obtain the
following formula for n ≤ m:

Vm ⊗ Vn ∼= Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ Vm−n. (4.5)

As observed in Section 4.2, the group SL2(Q) acts trivially on Gi,j for all
1 ≤ i < j ≤ n and, for each i ≤ n, the two dimensional subspace generated
by ai and bi is isomorphic to V1 as representation of SL2(Q).

We will use the decomposition of Theorem 4.2.10 to split A(E,n) into
Sn × SL2(Q)-modules.

Theorem 4.3.2. The algebra A(E,n) decomposes as Sn×SL2(Q)-represent-
ation in the following way:

Ap,q(E,n) ∼=
p⊕

k=0

(⊕
|λ|=q

Upλ,k

)
� Vk. (4.6)

Moreover, dimUpλ,k is zero if k 6≡ p modulo 2 and, otherwise, equals to

dimUpλ,k = s1k2a(1n−q) =
k + 1

a+ k + 1

(
n− q + 1

a

)(
n− q
a+ k

)
,

where a is such that k + 2a = p and q = |λ|.

Proof. The first part follows from Theorem 4.2.10. Notice that, for each λ ` n
with |λ| = q, the vector space

⊕
ω(s)=p A(λ, s) is isomorphic to Ap,0(E,n− q)

as representation of SL2(Q). The decomposition of Lemma 4.2.7 in the case
g = 1 simplifies as follows. The representation SλV1 is non-zero if and only if
λ has at most dimV1 blocks, i.e. λ = (b, a). In this case we have the equalities:

SλV1 = Sb−aV1 = Sb−aV1 = Vb−a.
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n

2n(0, 0)

(k, n− k)

2n− ka

Figure 4.1: The representation Vk appears only in the darken triangle.

Thus Upλ,k = S1k2a(Ind
Sn−q
Sn−q−1

1) as vector spaces, where k = b− a. Therefore,

using eq. (4.3) we have:

dimUpλ,k = s1k2a(1n−q)

=
∏

i=1,...,a
j=a+1,...,a+k

1 + j − i
j − i

∏
i=1,...,a

j=a+k+1,...,n−q

2 + j − i
j − i

∏
i=a+1,...,a+k

j=a+k+1,...,n−q

1 + j − i
j − i

=
∏

i=1,...,a

n− q + 2− i
a− i+ 1

n− q + 1− i
a+ k + 2− i

∏
i=a+1,...,a+k

n− q + 1− i
a+ k − i+ 1

=
k + 1

a+ k + 1

(
n− q + 1

a

)(
n− q
a+ k

)
.

The last equalities are obtained by a cumbersome computation; alternatively,
it can be obtained using the formula (iv) of [FH91, Exercise A.30].

The following corollary is immediate.

Corollary 4.3.3. The multiplicity of Vk in Ap,q(E,n) is non zero if and only
if k ≡ p mod 2 and k ≤ min { p, 2n− 2q − p }. Moreover, in this case the
multiplicity is equal to

[
n
n−q
]
s1k2a(1n−q), where p = k + 2a.

Therefore, the representation Va occurs only in the small triangle of Fig-
ure 4.1.

Splitting in cohomology

We fix the basis 1, a, b, [p] of H(E;Q) and we define the following elements
of A1,0(E,n): ui,j := ai − aj , vi,j := bi − bj , for i 6= j, and γ :=

∑n
i=1 ai,

γ :=
∑n

i=1 bi.

We define, for n > 0, the dga B(n) as the subalgebra of A(E,n) generated
by ui,j , vi,j and Gi,j for 1 ≤ i < j ≤ n. It is a sub-dga since d(Gi,j) = ui,jvi,j .
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Let D(n) be the subalgebra of A•,0(E,n) generated by γ and γ endowed with
the zero differential map. Notice that

A(E,n) ∼= B(n)⊗Q D(n) (4.7)

as differential algebras. Notice also that D(n) are all isomorphic to the coho-
mology ring of the elliptic curve E.

The following result is a particular case of [Bib16a, Theorem 3.3] and of
[Dup16a, Theorem 1.2].

Theorem 4.3.4. Let n > 0, the cohomology algebra of Fn(E) (or of Mn(E))
with rational coefficients is isomorphic to the cohomology of the dga A(E,n)
(respectively of B(n)). Moreover, the n2-sheeted covering

E ×Mn(E)→ Fn
(q, p) 7→ (pi + q)i=1,...,n

induces the isomorphism of eq. (4.7).

We have the analogous results of the previous subsection for the algebra
B(n).

Corollary 4.3.5. The multiplicity of Vk in Bp,q(n) is non zero if and only if
k ≡ p mod 2 and k ≤ min { p, 2n− 2q − 2− p }. Moreover, in this case the
multiplicity is equal to

[
n
n−q
]
s1k2a(1n−q−1), where p = k + 2a.

Proof. It follows from the fact that B•,0(n) ∼= A•,0(E,n− 1) as representation
of SL2(Q).

Filtration and representation stability

Now we need to stress the dependence of A(λ, s) from n, thus we will write
An(λ, s).

Definition 4.3.6. The dimension of the support of a labelled partition (λ, s)
is the natural number τ(λ, s) = n− |{ i | λi = 1, s(λi) = 1 }|.

Lemma 4.3.7. Let (λ, s) be a labelled partition of n, then

An(λ, s) = IndSn
Sτ(λ,s)×Sn−τ(λ,s)

Aτ(λ,s)(λ, s).

Proof. It follows from Theorem 4.2.5 since Zλ,s = Z × Sn−τ(λ,s) for some
Z < Sτ(λ,s) and ξλ,s|Sn−τ(λ,s)

= 1Sn−τ(λ,s)
.

Let R be the Z-algebra whose underline module is the free Z-module gen-
erated by the elements [Vk] for k ∈ N and multiplication defined by the tensor
product, see eq. (4.5). The ring R is called the Grothendieck ring of SL2(Q),
however we will use only as Z-module. We denote for each finite dimensional
representation V = ⊕kVakk of SL2(Q) by [V ] ∈ R the corresponding element∑

k ak[Vk].
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Definition 4.3.8. The Poincaré series of a family A(n) of bigraded algebras
with an action of SL2(Q) is the formal series QA(t, s, r) ∈ R[[t, s, r]] defined
by

QA(t, s, r)
def
=
∑
p,q,n

[Ap,q(n)]tpsqrn.

Definition 4.3.9. Let F• A(E,n) be the increasing filtration defined by

Fi A(E,n)
def
=

⊕
(λ,s) s.t. τ(λ,s)≤i

A(λ, s).

We define F• B(n) as the induced filtration, i.e. Fi B(n) := Fi A(E,n) ∩
B(n). Notice that the filtration is compatible with the decomposition of
eq. (4.7).

We say that a filtration F• of a dga (A, d) is strictly compatible with the
differential if Im d∩FiA = d(FiA) for all i.

Conjecture 4.3.10. The filtration F• A(E,n) is strictly compatible with the
differential.

If the conjecture were true, then we would have the following:

grFH
p,q(Fn(E)) ∼= grFH

p,q(A(E,n))
∼= Hp,q(grF(A(E,n)))

=
⊕
i≤n

Hp,q
(

Fi A(E,n)�Fi−1 A(E,n)

)
=
⊕
i≤n

Hp,q
( ⊕
τ(λ,s)=i

A(λ, s)
)

=
⊕
i≤n

IndSn
Si×Sn−i H

p,q
(

A(E, i)�Fi−1 A(E, i)

)
.

(4.8)

We used, in order, that A(E,n) is a model for Fn(E), Conjecture 4.3.10, and
Lemma 4.3.7.

Corollary 4.3.11. Suppose that Conjecture 4.3.10 holds, then

QH(F•(E))(t, s, r) =
∑
p,q,i

[
Hp,q

(
A(E, i)�Fi−1 A(E, i)

)]
tpsq

ri

(1− r)i+1
. (4.9)

Proof. For any representation V of the group Si × Sn−i × SL2(Q) we have
[IndSn

Si×Sn−i V ] =
(
n
i

)
[V ] ∈ R and for every i ∈ N we have

∑
n≥i
(
n
i

)
rn =

ri

(1−r)i+1 . The thesis follows from eq. (4.8).
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Corollary 4.3.12. We have

QA(E)(t, s, r) =
∑
k,a,q,n

[
n

n− q

]
s1k2a(1n−q)[Vk]tk+2asqrn.

There exist natural numbers mk,a,q,i ∈ N such that

QA(E)(t, s, r) =
∑
k,a,q,i

mk,a,q,i[Vk]tk+2asq
ri

(1− r)i+1
.

Proof. We apply Corollary 4.3.3 for the first part. The second one follows by
taking mk,a,q,i equals to the multiplicity of Vk in the representation

Ak+2a,q(E, i)�Fi−1 Ak+2a,q(E, i).

This numbers mk,a,q,i, for fixed value of k, a, q, are easy to calculate by solv-
ing the upper triangular system Am = y where A = (

(
i
j

)
)i,j , m = (mk,a,q,i)i

and y = (
[
i
i−q
]
s1k2a(1i−q))i.

The particular case m0,0,q,i are listed in the sequence [OEI19, A259456].

The first row

Now we analyse the first rows of A•,0(E,n) and of B•,0(n) as representation
of Sn × SL2(Q); from this we deduce the mixed hodge numbers hp,0(Fn(E))
and hp,0(Mn(E)).

Theorem 4.3.13. For n > 0, the cohomology of Mn(E) in bidegree (p, 0) is
given by

Hp,0(Mn(E)) = Hp,0(B(n)) = ∧p Vn(1)� Vp = Vn(1p)� Vp

as representations of Sn × SL2(Q) and it is of dimension
(
n−1
p

)
(p+ 1).

Therefore we can describe H•,0(Fn(E)) explicitly:

H•,0(Fn(E)) = H•,0(A(E,n)) = H•(E)⊗H•,0(Mn(E))

Proof of Theorem 4.3.13. First, notice that the representation S1p Vn(1)�Vp
cannot lay in Im d since Vp does not appear in Bp−2,1 by Corollary 4.3.5.
Therefore H•,0(Fn(E)) ⊇ Vn(1p)� Vp.

The range of d•,1 is an ideal of B(n) generated in degree 2. Let ui = ai−ai+1

and vi = bi − bi+1 for i = 1, . . . , n − 1 be a basis of B1,0(n). Consider the
monomial order on B(n) = ∧Vn(1) induced by the deglex with u1 > u2 >
· · · > un−1 > vn−1 > vn−2 > · · · > v1. For i < j we have:

dGi,j =

(
j−1∑
k=i

uk

)(
j−1∑
k=i

vk

)
,

Cohomology and Combinatorics of Toric Arrangements 121

https://oeis.org/A259456


CHAPTER 4. COHOMOLOGY OF CONFIGURATIONS SPACES

and therefore in(Im d) contains all the elements of the form uivj−1 = in(dGi,j)
for 1 ≤ i ≤ j ≤ n. Therefore in(Im d) contains all monomials with two factors
ui and vj with i ≤ j. The remaining monomials are of the forms

ui1 · · ·uikvik+1
· · · vip

for n−1 ≥ i1 > · · · > ip ≥ 1 and 0 ≤ k ≤ p. Their number is
(
n−1
p

)
(p+1) and it

is an upper bound for the dimension of Bp,0(n)/ Im d. Finally, H•,0(Fn(E)) =
Vn(1p)� Vp since dim∧p Vn(1)� Vp =

(
n−1
p

)
(p+ 1).

Corollary 4.3.14. We have

QH(M•(E))(t, 0, r) =
∑
p

[Vp]tp
(

r

1− r

)p+1

and

QH(F•(E))(t, 0, r) = 1 +
∑
p

[Vp](1 + [V1]t+ t2)tp
(

r

1− r

)p+1

Proof. It follows from Theorem 4.3.13 using the following identity:

∑
n,p

(
n− 1

p

)
[Vp]tprn =

∑
p

[Vp]tp
(

r

1− r

)p+1

.

The second assertion follows from eq. (4.7) for n > 0, the case n = 0 is
trivial.

Lower bound for sums of mixed hodge numbers

Since Theorem 4.3.4 holds only for n > 0, we cannot prove the analogous
statement of Corollary 4.3.11 for QB. Therefore we slightly modify the algebra
B.

Definition 4.3.15. Let B̃(n) be the subalgebra of B(n) defined as B•,>0(n)+
Im d. By convention we set B̃(0) = 0.

By definition we have Hp,q(B̃(n)) = Hp,q(B(n)) for all p ≥ 0 and q > 0.

Corollary 4.3.16. Suppose that Conjecture 4.3.10 holds, then

QH(B̃)(t, s, r) =
∑
p,q,i

[
Hp,q

(
B̃(i)�Fi−1 B̃(i)

)]
tpsq

ri

(1− r)i+1
(4.10)

Proof. The monomials with q = 0 do not appear on both sides of eq. (4.10).
We haveHp,q(B̃(i)/Fi−1 B̃(i)) = Hp,q(B(i)/Fi−1 B(i)) andHp,q(B̃) = Hp,q(B)
for q > 0. The thesis follows from eq. (4.7) dividing both sides of eq. (4.9) by
1 + [V1]t+ t2.
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Corollary 4.3.17. We have

QB̃(t, s, r) =
∑
k,a,q,n

[
n

n− q

]
s1k2a(1n−q−1)[Vk]tk+2asqrn.

There exist natural numbers nk,a,q,i ∈ N such that

QB̃(t, s, r) =
∑
k,a,q,i

nk,a,q,i[Vk]tk+2asq
ri

(1− r)i+1
.

Proof. We apply Corollary 4.3.5 for the first part. The second one follows
from Corollary 4.3.16 with nk,a,q,i equals to the multiplicity of Vk in the rep-

resentation
B̃
k+2a,q

(i)�
Fi−1 B̃

k+2a,q
(i)

.

We give a lower bound for the sum of hodge numbers hp,q(Fn(E)) on the
“diagonal” p+2q constant. We partially order R by saying r ≥ r′ if r−r′ is an
effective representation, moreover we partially order the series coefficient-wise.

Theorem 4.3.18. Suppose that Conjecture 4.3.10 holds, then

QH(M(E))(t, t
2, r) ≥

∑
k,b,i

|dk,b,i| [Vk]tk+2b ri

(1− r)i+1
+
∑
k

[Vk]tk
(

r

1− r

)k+1

,

(4.11)
where dk,b,i =

∑b
q=0(−1)qnk,b−q,q,i ∈ N. Moreover,

QH(F(E))(t, t
2, r) = 1 + (1 + [V1]t+ t2)QH(M(E))(t, t

2, r).

Proof. We have proven that H(M(E)) = H(B) and, since Hp,0(B) is con-
tained in ker d, we have:

QH(M(E))(t, t
2, r) = QH(B̃)(t, t

2, r) +QH(M(E))(t, 0, r).

Let hk,a,q,i be the multiplicity of Vk in Hp,q
(

B̃(i)�Fi−1 B̃(i)

)
.

QH(B̃)(t, t
2, r) =

∑
k,a,q,i

hk,a,q,i[Vk]tk+2a+2q ri

(1− r)i+1

≥
∑
k,b,i

∣∣∣∣∣∣
b∑

q=0

(−1)qhk,b−q,q,i

∣∣∣∣∣∣ [Vk]tk+2b ri

(1− r)i+1

=
∑
k,b,i

∣∣∣∣∣∣
b∑

q=0

(−1)qnk,b−q,q,i

∣∣∣∣∣∣ [Vk]tk+2b ri

(1− r)i+1
,

where the last equality is obtained by equating the “Euler characteristic” of
subcomplexes and their cohomology.

Cohomology and Combinatorics of Toric Arrangements 123



CHAPTER 4. COHOMOLOGY OF CONFIGURATIONS SPACES

Conjecture 4.3.19. The inequality of eq. (4.11) is an equality.

We have verified the conjecture above until degree 7 in the variable r. Our
method can lead to a lower bound of

∑
q h

c−2q,q(n) for all c and n by taking
the dimension of both sides of eq. (4.11).

Moreover, we conjecture the following:

Conjecture 4.3.20. The cohomology of B(i)/Fi−1 B(i) is concentrate in de-
grees (p, q) with p+ q = i− 2 or p+ q = i− 1.

This conjecture is verified until total degree p+ q < 7.
Suppose that Conjecture 4.3.19 and Conjecture 4.3.20 hold, then the mul-

tiplicity of Vk in Hp,q(B(i)/Fi−1 B(i)) can be determine by the number dk,b,i
(where 2b = p + 2q − k). More precisely, it is zero if sgn dk,b,i 6= (−1)q and
equal to |dk,b,i| otherwise. This leads to an explicit combinatorial formula for
the mixed hodge numbers for Fn(E).

Examples

Assume Conjecture 4.3.10, the numbers dk,b,i are calculated from the nk,a,q,i.
The value of nk,a,q,i are computed recursively in i from Corollary 4.3.17:[

n

n− q

]
s1k2a(1n−q−1) =

[
n

n− q

]
k + 1

a+ k + 1

(
n− q
a

)(
n− q − 1

a+ k

)
=

n∑
i=0

(
n

i

)
nk,a,q,i.

We report dk,b,i for i ≤ 7 in Table 4.1. Furthermore, by assuming Conjec-
ture 4.3.19 we obtain, for all r and n, the following equality

∑
p+2q=r,q>0

dimHp,q(Mn(E)) =
n∑
i=3

b r
2
c∑

k=0

|dr−2k,k,i|
(
n

i

)
(r − 2k + 1).

The dimension of Hp,q(Mn(E)) are computed for n ≤ 7 from the algebra
B(n) using [The18], see Tables 4.2 to 4.6.

4.4 Genus one: unordered configurations

We compute the cohomology with rational coefficients of the unordered con-
figuration spaces of n points on the torus, taking care of the mixed Hodge
structure and of the action of SL2(Q). The integral cohomology groups are
known only for small n in [Nap03, Table 2], where a cellular decomposition
of ordered configuration spaces is given. In this section, we use the previous
calculation of the Betti numbers of Cn(E) to determine the Hodge polynomial
in the Grothendieck ring of SL2(Q).
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(k, b, i) dk,b,i
(1, 1, 3) −1
(0, 2, 4) −1
(1, 2, 4) 2
(2, 1, 4) −3
(0, 3, 5) 5
(1, 3, 5) −6
(2, 2, 5) 11
(3, 1, 5) −6
(0, 3, 6) 5
(0, 4, 6) −26
(1, 3, 6) 6
(1, 4, 6) 24
(2, 2, 6) 9
(2, 3, 6) −50

(k, b, i) dk,b,i
(3, 2, 6) 35
(4, 1, 6) −10
(0, 4, 7) −49
(0, 5, 7) 154
(1, 3, 7) 14
(1, 4, 7) −70
(1, 5, 7) −120
(2, 3, 7) −70
(2, 4, 7) 274
(3, 2, 7) 35
(3, 3, 7) −225
(4, 2, 7) 85
(5, 1, 7) −15

Table 4.1: The non-zero value of dk,b,i for i ≤ 7.

0
1 2

Table 4.2: The dimension of the graded cohomology of H(M2(E);Q).

0
0 2
1 4 3

Table 4.3: The dimension of the graded cohomology of H(M3(E);Q).

0
0 4
0 8 10
1 6 9 4

Table 4.4: The dimension of the graded cohomology of H(M4(E);Q).

0
0 12
0 20 38
0 20 50 24
1 8 18 16 5

Table 4.5: The dimension of the graded cohomology of H(M5(E);Q).
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0
0 48
0 72 176
0 60 260 152
0 40 150 144 50
1 10 30 40 25 6

Table 4.6: The dimension of the graded cohomology of H(M6(E);Q).

0
0 240
0 336 976
0 252 1491 1040
0 140 1022 1232 425
0 70 350 504 350 90
1 12 45 80 75 36 7

Table 4.7: The dimension of the graded cohomology of H(M7(E);Q).

We have A(E,n)Sn = B(n)Sn ⊗Q D. and we use the results of Section 4.2
to compute A(Σg, n)Sn .

Theorem 4.4.1. For q > p+ 1 we have Ap,q(Σg, n)Sn = 0.

Proof. Let 1n be the trivial representation of Sn. We use Theorem 4.2.5 to
show that

〈1n,Ap,q(Σg, n)〉Sn = 0

for q > p+ 1. Indeed, it is enough to prove that

〈1n,A(λ, s)〉Sn = 0

for all (λ, s) with |λ| = q and |s| = p. By Frobenius reciprocity we have

〈1n, IndSn
Zλ,s

ξλ,s〉Sn = 〈1Zλ,s , ξλ,s〉Zλ,s
= 〈1Cλ , ϕλ〉Cλ〈1Nλ,s , αλ,s〉Nλ,s

=
t∏
i=1

〈sgn|Cλi
, ϕλi〉Cλi

l∏
j=1

〈1Sµj
, sgn

⊗(λi+deg s(λi)+1)
Sµj

〉Sµj ,

where λi in any block exchanged by Sµj . The scalar product 〈sgn|Cλi
, ϕλi〉Cλi

is non zero if and only if λi = 1, 2 and 〈1Sµj
, sgn

⊗(λi+deg s(λi)+1)
Sµj

〉Sµj is non

zero if and only if µj = 1 or λi + deg s(λi) + 1 is even. If A(λ, s)Sn 6= 0, then
there exists at most one block λi such that λi = 2 and s(λi) = 1 and all other
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blocks with λj = 2 must be labelled with ai, bi for i = 1, . . . , g or with [pg].
Since q is the number of blocks of λ of size 2, we have

q =
∑

i s.t. λi=2

1 ≤ 1 +
∑

i s.t. λi=2

deg(s(λi)) ≤ 1 +
∑
i

deg(s(λi)) = 1 + p.

Consequently, A(λ, s)Sn = 0 for q > p+ 1.

In particular, for g = 1 we obtain the following corollary.

Corollary 4.4.2. For q > p+ 1 we have Bp,q(n)Sn = 0.

Observe that H•(Cn(E)) = H•(Fn(E))Sn by the Transfer Theorem. Define
the series

T (t, s) =
1 + t3s4

(1− t2s3)2
= 1 + 2t2s3 + t3s4 + 3t4s6 + 2t5s7 + . . .

and let Tn(t, s) be its truncation at degree n in the variable t.
The computation of the Betti numbers of unordered configuration space

of n points in an elliptic curve was done simultaneously by [DCK17], [Mag16],
and [Sch16] in different generality. We point to the last reference because
[Sch16, Theorem] fits exactly our generality.

Theorem 4.4.3. The Poincaré polynomial of Cn(E) is (1 + t)2Tn−1(t, 1).

Definition 4.4.4. The Hodge polynomial of Cn(E) in the Grothendieck ring
R is

2n∑
i=0

2i∑
k=i

[
WkH

i(Cn(E);Q)�Wk−1H
i(Cn(E);Q)

]
tisk ∈ R[t, s],

where WkH
i(Cn(E);Q) is the weight filtration on H i(Cn(E);Q). The ordinary

Hodge polynomial is

2n∑
i=0

2i∑
k=i

dimQ

(
WkH

i(Cn(E);Q)�Wk−1H
i(Cn(E);Q)

)
tisk.

We prove a stronger version of Theorem 4.4.3.

Theorem 4.4.5. The Hodge polynomial of Cn(E) with coefficients in the
Grothendieck ring R is

([V0] + [V1]ts+ [V0]t2s2)

bn−1
2
c∑

i=0

[Vi]t2is3i +

bn
2
c−1∑
i=1

[Vi−1]t2i+1s3i+1

 (4.12)

and the ordinary Hodge polynomial is (1 + uv)2Tn−1(u, v).

Figure 4.2 represents the bigraded module H(B(n)Sn) that corresponds to
the right factor of eq. (4.12).
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q Vq
q − 1 Vq−1 Vq−2

... . .
.
. .
.

2 V2 V1

1 V1 V0

0 V0

0 1 2 3 · · · q

(a) Case n = 2q + 1 odd.

q Vq Vq−1

... . .
.
. .
.

3 V3 V2

2 V2 V1

1 V1 V0

0 V0

0 1 2 3 · · · q q + 1

(b) Case n = 2q + 2 even.

Figure 4.2: The algebra H(B(n)Sn) as representation of SL2(Q).

Some elements in cohomology

For the sake of notation, when we work with g = 1 the elements (a1)i and
(b1)i for i = 1, . . . , n will be denoted by ai and bi respectively.

Definition 4.4.6. Let α, α ∈ A1,1(E,n), β ∈ A1,2(E,n) be the elements

α
def
=
∑
i,k<h

(ai − ak)Gk,h

α
def
=
∑
i,k<h

(bi − bk)Gk,h

β
def
=

∑
i,j,k<h

(3ai − aj − 2ak)(bj − bk)Gk,h

where the sum is taken over pairwise distinct indices i, j, k, h with k < h.

Notice that the elements α and α are defined only for n > 2 and β for
n > 3. Remember that γ, γ ∈ D1 were already defined as

∑
i ai and

∑
i bi.

Lemma 4.4.7. For n > 2, the element α belongs to B1,1(n)Sn, is non-zero,
and dα = 0.

Proof. First observe that α =
∑

i,k<h ui,kGk,h ∈ B1,1(n). For all σ ∈ Sn we
have

σα =
∑
i,k<h

uσ(i),σ(k)Gσ(k),σ(h) = α,

since uσ(i),σ(k)Gσ(k),σ(h) = uσ(i),σ(h)Gσ(k),σ(h) in A(E,n). The elements aiGk,h
and akGk,h are linearly independent, so it is enough to observe that the coef-
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ficient of a3G1,2 is 1. This proves that α 6= 0. Finally, we compute dα:

dα =
∑
i,k<h

ai dGk,h − ak dGk,h

=
∑
i,k<h

ai(ak − ah)(bk − bh) + akah(bk − bh)

=
∑
i,k,h

aiakbk − aiahbk + akahbk

= −
∑
i,k,h

aiahbk = 0,

where all sums are taken over pairwise distinct indices and the first two with
the additional condition k < h.

Lemma 4.4.8. For n > 3, the element β belongs to B1,2(n)Sn, is non-zero,
and dβ = 0.

Proof. Observe that

β =
∑

i,j,k<h

(ui,j + 2ui,k)vj,kGk,h ∈ B1,2(n)

and that σβ = β for all σ ∈ Sn by the relations uj,kGk,h = uj,hGk,h and
vj,kGk,h = vj,hGk,h. Consider the map ϕ :A → Q defined on generators by
ϕ(G1,2) = 1, ϕ(a3) = 1 and ϕ(b4) = 1 and zero on the other generators. The
map ϕ is well defined and ϕ(β) = 3, thus β 6= 0. Using the computation in the
proof of Lemma 4.4.7, we can observe that d

(∑
i,j,h<k 3ai(bj − bk)Gk,h

)
= 0.

The claim dβ = 0 follows from:

d(β) = d
( ∑
j,k<h

(aj + 2ak)(bj − bk)Gk,h
)

=
∑
j,k<h

ajbj dGk,h + ajbk(ak − ah)bh − 2akbjah(bk − bh)− 2akbkahbh

=
∑
j,k,h

ajbjakbk − aibjahbk + ajbkakbh − 2akbjahbk − akbkahbh

= 0,

where the indexes of the sums are pairwise distinct.

Lemma 4.4.9. For n > 2q the element αq is non-zero.

Proof. Let us rewrite α as α =
∑

i,k<h aiGk,h + (2 − n)
∑

k<h akGk,h. We
show that the coefficient of the monomial m = a1G1,2a3G3,4 . . . a2q−1G2q−1,2q

(defined for n ≥ 2q) in αq is non-zero for n > 2q.

Cohomology and Combinatorics of Toric Arrangements 129



CHAPTER 4. COHOMOLOGY OF CONFIGURATIONS SPACES

This coefficient is

aq = q!
∑
σ∈Sq

sgn(σ)(2− n)|Fixσ|2q−|Fixσ|.

Where q! are the ways to choose each G2k−1,2k one from each factors, and
since a2i−1G2k−1,2k has even degree we can suppose (up to the factor q!)
that G2k−1,2k is taken from the k-th factor. Now x2i−1 arises from either
x2i−1 or x2i of the σ(i)-th factor for some permutation σ ∈ Sq. Since
m = sgn(σ)

∏q
i=1 a2σ−1(k)−1G2k−1,2k the contribution has the sign of the per-

mutation σ. Finally, in α the monomial a2i−1G2k−1,2k has coefficient (2−n) if
i = k and 1 otherwise and the monomial a2iG2k−1,2k has coefficient 0 if i = k
and 1 otherwise.

We claim that∑
σ∈Sq

sgn(σ)x|Fixσ| = (x− 1)q−1(x+ q − 1), (4.13)

since both sides are the determinant of the matrix
x 1 · · · 1
1 x · · · 1
...

...
. . .

...
1 1 · · · x

 .

The left hand side of eq (4.13) is obtained by using the Laplace formula for
the determinant and the right hand side by relating the determinant to the

characteristic polynomial (−t)q−1(q − t) of the matrix

(
1 ··· 1
...
. . .

...
1 ··· 1

)
. We use

eq (4.13) with x = 2−n
2 to obtain:

aq = q!2q
∑
σ∈Sq

sgn(σ)
(2− n

2

)|Fixσ|
= q!2q

(−n
2

)q−1(2q − n
2

)
Thus aq = (−1)qq!nq−1(n− 2q) that is non-zero for n > 2q.

Lemma 4.4.10. For n > 2q + 1 the element αq−1β is non-zero.

Proof. Let us rewrite β as

β =
∑

i,j,k<h

aibjGk,h− 2(n− 3)
∑
i,k<h

(aibk + akbi)Gk,h− (n− 3)
∑
i,k<h

aibiGk,h+

+ 2(n− 2)(n− 3)
∑
k<h

akbkGk,h.

Let bq be the coefficient in αq−1β of the monomial

a1G1,2a3G3,4 . . . a2q−1G2q−1,2qy2q+1.
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This monomial is defined for n ≥ 2q + 1 and we will show that bq 6= 0 for
n > 2q+1. The number bq coincides with the coefficient of the same monomial
in the product

αq−1
( ∑
i,j,k<h

aibjGk,h − 2(n− 3)
∑
i,k<h

akbiGk,h

)
.

With further manipulation, we obtain that bq is the coefficient of the above
monomial in the expression

3αqb2q+1 + nαq−1
∑
k<h

akGk,hb2q+1.

Using the computation in the proof of Lemma 4.4.9 we obtain

bq = 3(−1)qq!nq−1(n− 2q) + nq(−1)q−1(q − 1)!nq−2(n− 2q + 2)

= 2(−1)qq!nq−1(n− 2q − 1).

The number bq is non zero for n > 2q + 1.

Proof of Theorem 4.4.5. It is enough to prove that the Hodge polynomial of
B(n)SGn in the Grothendieck ring of SL2(Q) is

bn−1
2
c∑

i=0

[Vi]u2iv3i +

bn
2
c−1∑
i=1

[Vi−1]u2i+1v3i+1

Observe that Im dq,p = 0 for q > p+ 1 by Corollary 4.4.2. From Lemma 4.4.7
and Lemma 4.4.9 we have that the elements αk for 2k < n generate as
SL2(Q)-module a subspace of dimension at least k + 1 in Hk,k(B(n)Sn ,d).
Analogously, from Lemma 4.4.8 and Lemma 4.4.10 the elements αk−1β for
2k + 1 < n generate as SL(Q)-module a subspace of dimension at least k in
Hk,k+1(B(n)Sn ,d). Since the Betti numbers of Cn(E) (Theorem 4.4.3) coin-
cides with the above dimensions, we have that H2k(B(n)Sn) ∼= Vku2kv3k and
H2k+1(B(n)Sn) ∼= Vk−1u

2k+1v3k+1.

The cohomology ring and formality

In this subsection we determine the cup product structure in the cohomology
of Cn(E) and we prove the aforementioned formality result.

In the following we consider graded algebras with an action of SL2(Q). We
will write (xi | i ∈ I)SL2(Q) for the ideal generated by the elements Mxi for all
M ∈ SL2(Q) and all i ∈ I.

Theorem 4.4.11. The cohomology ring of Cn(E) is isomorphic to

∧• V1 ⊗ S• V1[b]�
(ab

n+1
2
c, ab

n
2
cb, b2)SL(Q)

,

where a is a non-zero degree-one element in V (1) ⊂ V1 and b is an SL2(Q)-
invariant variable of degree 3.
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Proof. It is enough to prove that

H•(B(n)Sn) ∼= S• V1[b]/(ab
n+1

2
c, ab

n
2
cb, b2)SL(Q).

Define the morphism ϕ : S• V1[b]/(ab
n+1

2
c, ab

n
2
cb, b2)SL(Q) → H(B(n)Sn) that

sends a, b to α, β respectively. It is well defined because Hk(B(n)Sn) = 0 for
k ≥ n and β2 = 0 since it has odd degree. The map ϕ is surjective since
H(B(n)Sn) is generated by αi and αiβ as SL(Q)-module by Theorem 4.4.5.
A dimensional reasoning shows the injectivity of the map ϕ.

Corollary 4.4.12. The cohomology H•(Cn(E)) is generated as an algebra in
degrees one, two and three.

Proof. A minimal set of generators is given by α, α, β, γ, γ.

Corollary 4.4.13. The space Cn(E) is formal over the rationals.

Proof. We prove that B(n)Sn is formal. Consider the subalgebra K of B(n)Sn

generated by α, α, β endowed with the zero differential. It is concentrated in
degrees (i, i) and (i, i+1) because β2 = 0. Since K∩Im d = 0 (Corollary 4.4.2),
K ↪→ B(n)Sn is a quasi-isomorphism. The fact that K ∼= H(B(n)Sn) implies
that the algebra B(n)Sn is formal. As a consequence A(E,n)Sn is formal. The
space Cn(E) is formal since our model A(E,n)Sn is equivalent to the Sullivan
model.

4.5 Models for H(Cn(X))

We introduce a new and simple model for the cohomology of unordered con-
figuration spaces. Furthermore, in the case of Riemann surfaces we describe
a model uniform in the number of points.

Our first step consist in the simplification of the invariant part of the
Križ model by taking a quotient A(Σg, n)Sn/In where In is the acyclic ideal
introduced in Definition 4.5.6. In the case of surfaces Σg, the problem is fur-
ther simplified thanks to the introduction of a new dga (Ug,d), independent
from n, that maps onto (A(Σg, n)Sn/In,d). The dga (Ug,d) is filtered (c.f.
Definition 4.3.9) and this filtration Fn Ug is multiplicative and strictly com-
patible with the differential. This filtration computes the cohomology of our
configuration spaces, indeed H•(Fn Ug) ' H•(Cn(Σg)) as module.

The Bezrukavnikov basis for A(Σg, n)Sn

The results exposed in this section are similar to the ones obtained in [FT05].
We fix an ordered basis { bi }i=1,...r for the cohomology H•(X;Q). We

denote by |bi| the degree of bi ∈ H |bi|(X). In [Bez94] (see also [AAB14,
Aza15]) a canonical Bezrukavnikov basis for A(X,n) was given. We need a
such canonical basis for A(X,n)Sn .
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Definition 4.5.1. An invariant monomial is an element m ∈ A(X,n) of the
form

m = G1,2(bi1)1G3,4(bi2)3 . . . G2l−1,2l(bil)2l−1(bj1)2l+1 . . . (bjk)2l+k

where I = (i1, . . . il), J = (j1, . . . jk) are non-decreasing sequences such that
every integer r appears at most once in I if |br| is even and at most once in J
if |br| is odd. Obviously, we also require 2l + k ≤ n.

We define the length of m as the natural number 2l + k. By definition
we have that m1 = σ(m2) implies m1 = m2. We define a binary operation
between invariant monomials.

Definition 4.5.2. Let m1 and m2 be two invariant monomials with indexing
I1, J1 and I2, J2 respectively. Let I (and J) be the list I1 ∪ I2 increasingly
ordered (respectively J1∪J2). If the lists I and J define an invariant monomial
m, then we define m1 ◦m2 := sm ∈ E(X,n), where s ∈ {±1 } is the following
sign. Let σ1, σ2 ∈ Sn be two permutations such that σ1(m1)σ2(m2) = ±m,
the sign does not depend on the choice of the permutations thus we call it s.
Otherwise, we define m1 ◦m2 := 0.

Lemma 4.5.3. An additive basis for the invariants A(X,n)Sn is given by the
elements 1

(n−l(m))!

∑
σ∈Sn σ(m) where m runs over all invariant monomials in

A(X,n).

Proof. It is enough to prove that for each element x of the canonical Bezrukav-
nikov basis, the sum

∑
σ∈Sn σ(x) is either zero or there exists a unique invari-

ant monomial m such that ∑
σ∈Sn

σ(x) =
∑
σ∈Sn

σ(m).

Let (λ, s) be the unique partition such that x ∈ A(λ, s). If λ1 > 2 then we
have proven in Theorem 4.4.1 that A(λ, s)Sn = 0, so

∑
σ∈Sn σ(x) = 0.

If x is of the form (b)i(b)jy with |b| odd and y without indexes i, j, then∑
σ∈Sn

σ(x) =

(
n

2

)(
(b)i(b)j + (b)j(b)i

) ∑
µ∈Sn−2

µ(y) = 0.

If x is of the form Gi,j(b)iGk,l(b)ky with |b| even and y without indexes
i, j, k, l, then∑
σ∈Sn

σ(x) =

(
n

4

) ∑
τ∈S4

τ(Gi,j(b)iGk,l(b)k)
∑

µ∈Sn−4

µ(y)

=

(
n

4

) ∑
τ∈S4/〈(i,k)(j,l)〉

τ(Gi,j(b)iGk,l(b)k +Gk,l(b)kGi,j(b)i)
∑

µ∈Sn−4

µ(y)

= 0.
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Otherwise, x is equal to σ(m) for some σ ∈ Sn and some invariant mono-
mial m. Since the indexing of an invariant monomial is non-decreasing, the
monomial m is unique.

Recall from definition 4.3.9 the increasing filtration of A(X,n)Sn given by

Fi A(X,n)Sn =
〈∑
σ∈Sn

σ(m)
∣∣∣ m invariant monomial with 2l + k ≤ i

〉
.

Lemma 4.5.4. For all monomials m1 and m2 of length l1 and l2 we have

1

(n− l1)!

∑
σ∈Sn

σ(m1)
1

(n− l2)!

∑
σ∈Sn

σ(m2) =
1

(n− l1 + l2)!

∑
σ∈Sn

σ(m1 ◦m2)+x

for some x ∈ Fl1+l2−1 A(X,n)Sn. In particular, the filtration Fi A(X,n)Sn is
multiplicative.

Proof. We compute the product of
∑

σ∈Sn σ(m1) and
∑

σ∈Sn σ(m2) for two
invariant monomials of length l1 and l2, respectively. If l1 + l2 > n then the
product belongs to Fl1+l2 A(X,n)Sn = A(X,n)Sn . We expand the product
and obtain ( ∑

σ∈Sn

σ(m1)
)( ∑

σ∈Sn

σ(m2)
)

=
∑

σ,τ∈Sn

σ
(
m1τ(m2)

)
.

There are two cases:

• if τ({1, . . . , l2}) ∩ {1, . . . , l1} 6= ∅ then∑
σ∈Sn

σ(m1τ(m2)) ∈ Fl1+l2−1 A(X,n)Sn .

• Otherwise,
∑

σ∈Sn σ(m1τ(m2)) =
∑

σ∈Sn σ(m1 ◦m2).

The number of permutations τ such that τ({1, . . . , l2}) ∩ {1, . . . , l1} = ∅ is

equal to (n−l1)!(n−l2)!
(n−l1−l2)! . Thus we have:

∑
σ,τ∈Sn

σ
(
m1τ(m2)

)
=

(n− l1)!(n− l2)!

(n− l1 − l2)!

∑
σ∈Sn

σ(m1 ◦m2) + x,

for some x ∈ Fl1+l2−1 A(X,n)Sn .

Corollary 4.5.5. The algebra grF A(X,n)Sn is generated in degrees one and
two.

Proof. Using Lemma 4.5.4, we deduce that grF A(X,n)Sn is generated by the
classes of

∑n
i=1(b)i ∈ F1 A(X,n)Sn and of

∑
i 6=j Gi,j(b)i ∈ F2 A(X,n)Sn for b

in the chosen basis of H•(X).
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The K(X,n) model

We present a simpler model for the cohomology of unordered configuration
spaces in a compact orientable even dimensional manifold. Let In be the
ideal of A(X,n)Sn generated by the elements y :=

∑
σ∈Sn σ(G1,2[X]1) and

x2, where x :=
∑

σ∈Sn σ([X]1).

Definition 4.5.6. Let K(X,n) be the quotient A(X,n)Sn/In.

Lemma 4.5.7. The quotient K(X,n) is a dga and the induced map

H•(A(X,n)Sn)→ H•(K(X,n))

is an isomorphism.

Proof. If n = 1 then I1 = 0 and there is nothing to prove; assume n > 1.
Let us check the containment d(In) ⊆ In on the generators of the ideal In:
we have d

(
(
∑

σ∈Sn σ([X]1))2
)

= 0 since d([X]1) = 0. Recall that d(G1,2) =

∆1,2 =
∑

(−1)|b|b1b
∗
2, where b runs over the chosen basis of H•(X) and b∗ is

the Poincaré dual of b. Thus we have

d(y) =
∑
σ∈Sn

σ(d(G1,2)[X]1) =
∑
σ∈Sn

σ([X]1[X]2),

and since

x2 =
∑

σ,τ∈Sn

σ
(
[X]1τ([X]1)

)
= (n− 1)!(n− 1)

∑
σ∈Sn

σ([X]1[X]2),

we have proven that K(X,n) is a dga .
We claim that H•(I, d) = 0, the sought isomorphism will follow from the

long exact sequence associated to I → A(X,n)→ K(X,n). Let z = x2a+ yb
be an element in I such that d(z) = 0. By Corollary 4.5.5 we can suppose
a, b ∈ Fn−2 A(X,n). The relation

x2 d(a) +
x2b

(n− 1)!(n− 1)
− y d(b) = 0

implies that x2
(
d(a) + b

(n−1)!(n−1)

)
belongs to (y). The ideal (y) is generated

as vector space by all the invariant monomials such that il = [X]. Because
d(a) ∈ Fn−2 A(X,n), it follows that b = −(n − 1)!(n − 1) d(a) + cy. Finally,
since y2 = 0, we have z = (n− 1)!(n− 1) d(ya) and hence H•(I, d) = 0.

The stable algebra of surfaces

We want to compute all the cohomology groups of all configuration spaces
Cn(Σg) simultaneously.

Fix a basis {bi}i of the cohomology algebra H•(X) and let {b∗i }i be its
dual basis. The cohomology class of the diagonal is ∆ =

∑
i(−1)|bi|bi ⊗ b∗i ,

where |bi| is the degree of bi.
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Definition 4.5.8. The stable algebra Ug is the dga defined by

Ug
def
= ∧

•(H̃•(Σg)⊕H≤1(Σg)[1])�([pg]
2).

The generators in Hp(X)[1] are of bidegree (p, p+ 1) and will be denoted by
b̃ for b ∈ Hp(Σg). The ones in H̃p(Σg) are of bidegree (p, 0).

The differential d of bidegree (2,−1) is defined by:

d(1̃) = [pg]−
2g∑
i=1

bib
∗
i ,

d(b̃) = [pg]b for b ∈ H1(Σg),

d(b) = 0 for b ∈ H•(Σg).

Define the increasing filtration F• Ug of Ug by

Fi Ug = 〈x1x2 . . . xkỹ1ỹ2 . . . ỹl | k + 2l ≤ i〉.

We will omit the index g when the genus is unambiguous. Let λ(n) =
2n − χ(X) where χ is the Euler characteristic, from now on we will suppose
λ(n) 6= 0. This assumption excludes only the case C1(CP1).

We define the morphism ϕn : Ug → K(Σg, n) given by:

ϕn(1̃) =
∑
i 6=j

Gi,j

ϕn(x̃) =
λ(n)

2

∑
i 6=j

Gi,jxi for x ∈ H1(Σg)

ϕn([pg]) = λ(n)
n∑
i=1

[pg]i

ϕn(x) =

n∑
i=1

xi for x ∈ H≤1(Σg).

Lemma 4.5.9. If λ(n) 6= 0, the map ϕn induces an isomorphism of chain
complexes Fn Ug

∼−→ K(Σg, n).

Proof. Let us fix a basis 1, a1, . . . ag, b1, . . . , bg, [pg] of H•(Σg) and its dual
basis [pg], b

1, . . . , bg,−a1, . . . ,−ag, 1. The morphism ϕn is well defined since
ϕn([pg]

2) =
∑

i,j [pg]i[pg]j ∈ In. It is a morphism of differential algebras be-
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cause

d(ϕn(1̃)) = d
(∑
i 6=j

Gi,j

)
=
∑
i 6=j

(
[pg]i + [pg]j −

g∑
k=1

aki b
k
j − bki akj

)
= 2(n− 1 + g)

n∑
i=1

[pg]i −
g∑

k=1

( n∑
i=1

aki

)( n∑
i=1

bki

)
−
( n∑
i=1

bki

)( n∑
i=1

aki

)
= ϕn(d(1̃)).

An analogous computation shows that d(ϕn(x̃)) = ϕn(d(x̃)) for x ∈ H1(Σg).
By definition we have that ϕn(Fi Ug) ⊆ FiK(Σg, n). It is enough to prove

that the induced map grF Fn Ug → grF K(Σg, n) is an isomorphism.
The basis for grF K(Σg, n) is given by the invariant monomials with bil 6=

[pg] and bjk−1
6= [pg], if k > 1. The surjectivity of ϕn follows from the mul-

tiplication law in grF K(Σg, n). Since K(Σg, n) and Fn Ug have the same
dimension the map ϕn|FnA is an isomorphism.

4.6 Some facts of representation theory

We consider grF• H
•(Σg;Q) as a representation of the Lie algebra sp(2g) as-

sociated to the symplectic group. Call the fundamental weights of sp(2g)
ω1, . . . , ωg. The cohomology of Σg in degree one is given by the standard
representation, i.e. H1(Σg) = Vω1 .

Let a = 1̃, b = [pg] and V = H1(Σg). The algebra Ug is isomorphic to
∧• V ⊗ S• V [a, b]/(b2) with gradation given by: deg 1 ⊗ v = (1, 1), deg v ⊗
1 = (1, 0), deg a = (0, 1) and deg b = (2, 0). The differential is given by
d(1⊗ v) = b(v ⊗ 1) and d(a) = b+ ω where

ω
def
= −2(

g∑
j=1

aj ∧ bj)⊗ 1,

while on the other generators the differential is zero.
Before computing the cohomology of (Ug, d) we need to know the cohomol-

ogy of (∧• V ⊗ S• V, d̃), where the differential d̃ is defined by d̃(1⊗ v) = v ⊗ 1
and d̃(v ⊗ 1) = 0. The standard action of sl(2g) on V induces an action on
(∧• V ⊗ S• V, d̃), since the differential d̃ is sl(2g)-equivariant.

By an abuse of notation, we will call ω1, . . . , ω2g−1 the fundamental weights
of sl(2g) and Wλ its irreducible representations associated to a dominant
weight λ. Set ω2g = 0.

Lemma 4.6.1. The sl(2g)-representation ∧j V ⊗Si V decomposes, for j ≤ 2g,
as

∧j V ⊗ Si V = Wiω1+ωj ⊕W(i−1)ω1+ωj+1
.
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Proof. It is known that Si Vω1 = Wiω1 and ∧j Vω1 = Wωj . Let σ = (1, j+ 1) ∈
S2g be an element of the Weyl group of sl(2g). The element iω1 + σ(ωj) =
(i−1)ω1 +ωj+1 is a dominant weight for i > 0. By the Parthasarathy–Ranga-
Rao–Varadarajan conjecture (see [Lit94, Kum88]) Wiω1+ωj and W(i−1)ω1+ωj+1

are contained in the tensor product Wiω1 ⊗ Wωj . Use the Weyl character
formula to find

dimWiω1+ωj =

(
i+ j − 1

i

)(
i+ 2g

i+ j

)
.

The equality
(
i+j−1
i

)(
i+2g
i+j

)
+
(
i+j−1
i−1

)(
i+2g−1
i+j

)
=
(

2g
j

)(
i+2g−1

i

)
completes the

proof.

Lemma 4.6.2. The differential complex (∧• V ⊗ S• V, d̃) is exact in positive
degree.

Proof. The differential

d̃ : Wiω1+ωj ⊕W(i−1)ω1+ωj+1
→W(i−1)ω1+ωj+1

⊕W(i−2)ω1+ωj

is a non-zero morphism of representations. Thus, we have Wiω1+ωj = (ker d̃)j,i

and W(i−1)ω1+ωj+1
= (Im d̃)j+1,i−1 for j ≥ 0. Obviously (Im d̃)0,0 = 0, so

H•(∧• V ⊗ S• V, d̃) = Q.

Since the Lie algebra sl(2g) does not act on Ug, we need to present a
branching rule for sp(2g) ⊂ sl(2g). For the sake of an uniform notation, we
define Vλ = 0 if λ is not a dominant weight.

Lemma 4.6.3 (Branching rule). The sl(2g)-module Wiω1+ωj decomposes as
sp(2g)-module in the following ways:

Wiω1+ωj =

b j−1
2
c⊕

k=0

Viω1+ωj−2k
⊕
b j−2

2
c⊕

k=0

V(i−1)ω1+ωj−2k−1
when 2 ≤ j ≤ g,

Wiω1+ωj =

b 2g−j−1
2
c⊕

k=0

Viω1+ω2g−j−2k
⊕
b 2g−j−2

2
c⊕

k=0

V(i−1)ω1+ω2g−j−2k−1
when j ≥ g.

Proof. We apply the result of [ST16, Theorem 1]. The diagram associated
to iω1 + ωj has a hook shape with row of length i + 1 and column of length
j. Fill each box with labels in the ordered set {1 < ... < g < ḡ < ... < 1̄},
such that it becomes a semi-standard Young tableaux (SSYT) i.e. the rows are
non-decreasing and columns are increasing. The word w(T ) – associated to a
SSYT T – is the word obtained by reading the tableaux from right to left and
from top to bottom. By convention, eā = −ea. A word w(T ) = a1a2 . . . ak
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is admissible if for each r ≤ k the element
∑r

s=1 eas is a dominant weight for
sp(2g). The decomposition of Wiω1+ωj into sp(2g)-representations is given by

Wiω1+ωj =
⊕

w(T ) adimissible

Vλ(T ),

where λ(T ) =
∑|w(T )|

s=1 eas .
Suppose w(T ) is admissible, then the first row of T is labelled only by ones.

For j ≤ g, all possible labels of the first column of T , from top to bottom, are
the followings:

• 1, 2, . . . , j−k, j − k, j − k − 1, . . . , j − 2k + 1, where k is an integer such
that 0 ≤ 2k ≤ j − 1

• 1, 2, . . . , j−k−1, j − k − 1, . . . , j − 2k, 1̄, where k is an integer such that
0 ≤ 2k ≤ j − 2 and i > 0.

Our decomposition follows, the case j > g being analogous.

The differential d involves the multiplication by ω, thus we need to study
the operator ω : ∧i V ⊗ Sj V → ∧i V ⊗ Sj+2 V .

Lemma 4.6.4 ([FH91, Theorem 17.5]). The sp(2g)-representation ∧j V is
isomorphic to ∧2g−j V and decomposes, for j ≤ g, as

∧j V = Wωj =

b j
2
c⊕

k=0

Vωj−2k
.

Moreover, (kerω)2g−j = Vωj ⊂ ∧2g−j V and (cokerω)j = Vωj ⊂ ∧j V .

Lemma 4.6.5. For i > 0 and 1 ≤ j ≤ g, we have

Vωj ⊗ Si V = Viω1+ωj ⊕ V(i−1)ω1+ωj+1
⊕ V(i−1)ω1+ωj−1

⊕ V(i−2)ω1+ωj .

Proof. We use Lemmas 4.6.1, 4.6.3 and 4.6.4:

Vωj ⊗ Si V = ∧j V ⊗ Si V 	 ∧j−2 V ⊗ Si V

= Wiω1+ωj ⊕W(i−1)ω1+ωj+1
	Wiω1+ωj−2 	W(i−1)ω1+ωj−1

= Viω1+ωj ⊕ V(i−1)ω1+ωj+1
⊕ V(i−1)ω1+ωj−1

⊕ V(i−2)ω1+ωj .

We denote by Rg the Grothendieck ring of sp(2g).

Definition 4.6.6. Let W be a bigraded representation of the group sp(2g).
The Hilbert–Poincaré series of W is the formal power series

PW (t, s) =
∑
i,j

[W i,j ]tisj ∈ Rg[[t, s]].
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Corollary 4.6.7. The Hilbert–Poincaré series of the representation ∧• V ⊗
S• V is

P∧ V⊗S V (t, s) =
t2(g+1) − 1

t2 − 1
+ t2s

t2g − 1

t2 − 1
+

+ (1 + s)(1 + t2s)
∑

1≤j≤g
i≥0

[Viω1+ωj ]
t2(g−j+1) − 1

t2 − 1
ti+jsi.

The Corollary follows from Lemmas 4.6.4 and 4.6.5.

Lemma 4.6.8. We have

dimViω1+ωj =

(
2g + i+ 1

i, j

)
2g + 2− 2j

2g + 2 + i− j
j

i+ j
, (4.14)

Proof. Recall that the positive roots of the Lie algebra sp(2g) are ek ± eh for
1 ≤ k < h ≤ g and 2ek for 1 ≤ k ≤ g. Moreover ρ =

∑g
k=1(g + 1 − k)ek.

Apply the Weyl formula for the dimension of a representation:∏
k<h

〈iω1 + ωj + ρ, ek − eh〉
〈ρ, ek − eh〉

=
(g + i)!

i!(g − j)!(j − 1)!(i+ j)∏
k<h

〈iω1 + ωj + ρ, ek + eh〉
〈ρ, ek + eh〉

=
(2g + i+ 1)!(g + 1− j)!(2g + 2− 2j)

(2g + i+ 1)!(2g + 1− j)!(2g + i+ 2− j)
g∏

k=1

〈iω1 + ωj + ρ, 2ek〉
〈ρ, 2ek〉

=
g + 1 + i

g + 1− j
.

We obtain eq. (4.14) by multiplying the right hand sides of the previous equa-
tions.

4.7 The cohomology of configuration spaces

The formula for the Betti numbers of Cn(Σg) given in [DCK17] is different from
ours (eq. (4.21)), which has no cancellations and a more geometric meaning.

The case of the sphere (g = 0) is essentially different from the case g > 0
and our approach is useless since sp(2g) is trivial for g = 0. We refer to
[Sal04, Sch18] for the proof of the following theorem.

Theorem 4.7.1. The rational homology of Cn(S2) is:

H0(Cn(S2);Q) = Q
H2(C2(S2);Q) = Q
H3(Cn(S2);Q) = Q for n ≥ 3

H3(Cn(S2);Q) = 0 otherwise.
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The case of genus one surfaces is studied in [Sch16, Mag16].
From now on we assume g > 0. The following lemma is the proof of

Conjecture 4.3.10 only for the invariant sub-algebra.

Lemma 4.7.2. For g > 0 the filtration Fn Ug is strictly compatible with the
differential. Therefore, grF• H

•(U,d) ' H•(grF• U, grF• d).

The fact that the filtration Fn Ug is strictly compatible with the differential
d is related to the rational homological stability of Cn(Σg) proven in [Chu12,
RW13] in more generality.

Proof of Lemma 4.7.2. We need to prove that Im d∩Fn U ⊆ d(Fn U) for all
n ≥ 0. Consider a generic element ax+aby+ z+ bw in Fn U with x ∈ Fn−2 U,
y ∈ Fn−3 U, z ∈ Fn U, and w ∈ Fn−1 U. Suppose that d(ax+ aby + z + bw) ∈
Fn−1 U, then we have

d(ax+ aby + z + bw) = bx+ ωx+ abd̃(x) + ωby + bd̃(z).

It follows that d̃(x) ∈ Fn−4 U, d̃(z) + ωy ∈ Fn−2 U and ωx ∈ Fn−1 U. Since
the filtration, restricted to ∧• V ⊗ S• V , is induced by the total degree, we
can suppose x, y, z being homogeneous of total degree n − 2, n − 3, and n
respectively. So we have d̃(x) = 0, d̃(z) + ωy = 0, and ωx = 0. We deduce
from ωx = 0 that deg(x) > 0 and hence, from d̃(x) = 0, that x = d̃(x′) for
some x′ of total degree n− 1. It follows that d(ax+ aby+ z+ bw) = d(x′) for
x′ ∈ Fn−1 U and Im d∩Fn−1 U ⊆ d(Fn−1 U).

From now on we will work in grF U with the differential grF d. The only
difference between d and grF d is that (grF d)(a) = ω. By abuse of notation
we denote by d the differential of grF U.

Lemma 4.7.3. The kernel of the differential d is the direct sum of the fol-
lowing vector spaces:

1. (ker d̃ ∩ kerω)[0, 1],

2. (Im d̃ ∩ kerω)[2, 2]⊕ ker d̃[2, 1],

3. ker d̃,

4. ∧• V ⊗ S• V [2, 0].

Proof. Consider a generic element abx+ay+bz+w with x, y, z, w ∈ ∧• V⊗S• V :
its differential is

d(ax+ aby + z + bw) = ωx+ abd̃(x) + ωby + bd̃(z). (4.15)

Therefore d(ax+ aby + z + bw) = 0 if and only if ωx = 0, d̃(x) = 0 and ωy +
d̃(z) = 0. The equations ωx = 0 and d̃(x) = 0, together with Lemma 4.6.2,
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imply that there exists x′ such that d̃(x′) = x. The equation ωy + d̃(z) = 0
is equivalent to d̃(ωy) = ωd̃(y) = 0, thus y ∈ ker d̃ ⊕ (Im d̃ ∩ kerω)[0, 1]. Let
z′ be an element such that ωy = d̃(z′): then z is of the form z′ + z′′ for some
z′′ ∈ ker d̃ and w can be any element in ∧• V ⊗ S• V .

Lemma 4.7.4. The image of the differential d is the direct sum of the fol-
lowing vector spaces:

1. 0,

2. Im d̃[2, 1],

3. ω ker d̃

4. Imω[2, 0] + Im d̃[2, 0].

Proof. Eq. (4.15) implies that the image of d has trivial intersection with the
submodule a∧• V ⊗ S• V . Consider x such that d̃(x) 6= 0, then the element
ωx+abd̃(x) gives the addendum Im d̃[2, 1]. Now suppose d̃(x) = 0 and ωx 6= 0,
then ωx is in the image and generates a submodule isomorphic to ω ker d̃.

Finally, Im d̃∩b∧• V ⊗S• V coincides with Imω[2, 0]+Im d̃[2, 0] (in general
this is not a direct sum).

The following lemma is a consequence of Lemmas 4.7.3 and 4.7.4.

Lemma 4.7.5. The cohomology H•(U,d) is generated by:

1. ay − x if y = d̃(x) ∈ ker d̃ ∩ kerω,

(2.1) ab+ ω,

(2.2) aby − x if d̃y ∈ ker d̃ ∩ kerω and ωy = d̃x,

(3) y if y ∈ ker d̃/ω ker d̃,

(4) by if y ∈ ∧• V ⊗ S• V/(Im d̃ + Imω).

Lemma 4.7.6. The cohomologies of kerω, Imω, and cokerω with respect to
the differential d̃ are given by:

H0,0(cokerω) = 〈1〉 (4.16)

H1,1(cokerω) = 〈ω〉 (4.17)

H2,0(Imω) = 〈ω〉 (4.18)

Hg,i(cokerω) = Hg+1,i−1(Imω) = Hg,i−2(kerω) ' V(i−2)ω1+ωg (4.19)

Hj,i(cokerω) = Hj+1,i−1(Imω) = Hj,i−2(kerω) = 0. (4.20)
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Proof. Consider the two short exact sequences

0→ kerω → ∧• V ⊗ S• V → Imω[2, 0]→ 0

0→ Imω → ∧• V ⊗ S• V → cokerω → 0.

By Lemma 4.6.2 we have Hj,i(cokerω) ' Hj+1,i−1(Imω) for (j, i) 6= (0, 0)
and Hj,i(Imω) ' Hj−1,i−1(kerω) for (j, i) 6= (2, 0). Eq. (4.16), (4.17) and
(4.18) follow immediately from the long exact sequence in cohomology. Since
(kerω)j,i = 0 for j < g and (cokerω)j,i = 0 for j > g, we deduce eq. (4.20).
The only representation that can appear in Hg,i(cokerω) ' Hg,i−2(kerω)
is V(i−2)ω1+ωg . It is easy to see that the subspace Viω1+ωg ⊂ Vωg ⊗ SiV is

contained in kerω ∩ ker d, but cannot lay in d(kerω) since (kerω)g−1,i+1 = 0.
Finally, we have proven eq. (4.19).

Lemma 4.7.7. The Hilbert–Poincaré series of ker d̃ ∩ kerω is

Pker d̃∩kerω(t, s) = t2g + (1 + t2s)
∑

1≤j≤g
i≥0

[Viω1+ωj ]t
2g−j+isi.

Proof. Notice that ker d̃ ∩ kerω = ker(d̃| kerω) and that

Pkerω(t, s) =
∑

1≤j<g
i≥0

[Viω1+ωj ]t
2g−j+isi(1 + s)(1 + t2s)+

+ t2g + t2gs+
∑
i≥0

[Viω1+ωg ]t
g+isi(1 + t2s+ t2s2)

PH(kerω)(t, s) =
∑
i≥0

[Viω1+ωg ]t
g+isi.

Using the formula (s + 1)Pker(d̃| kerω)(t, s) = Pkerω(t, s) + sPH(kerω)(t, s) we

obtain the claimed equality.

Lemma 4.7.8. The Hilbert–Poincaré series of ker d̃/ω ker d̃ is

Pker d̃/ω ker d̃(t, s) = 1 + (1 + t2s)
∑

1≤j≤g
i≥0

[Viω1+ωj ]t
j+isi.

Proof. Consider the exact sequence

0→ ker d̃ ∩ kerω → ker d̃
ω−→ ker d̃→ ker d̃�ω ker d̃→ 0.

We have

Pker d̃/ω ker d̃(t, s) = (1− t2)Pker d̃(t, s) + t2Pker d̃∩kerω(t, s),

and by Lemma 4.7.7 we obtain the claimed equality.
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Lemma 4.7.9. The Hilbert–Poincaré series of ∧• V ⊗ S• V/ Imω + Im d̃ is

P∧ V⊗S V/ Imω+Im d̃(t, s) = (1 + t2s)
(
1 + s

∑
1≤j≤g
i≥0

[Viω1+ωj ]t
j+isi

)
.

Proof. Let K be the quotient ∧• V ⊗ S• V/ Imω + Im d̃. Consider the exact
sequence

0→ Im d̃ ∩ Imω → Im d̃⊕ Imω → ∧• V ⊗ S• V → K → 0

and notice that Im d̃ ∩ Imω = ker d̃ ∩ Imω = ker(d̃| Imω). We compute
Pker(d̃| Imω) using the formula

(1 + s)Pker(d̃| Imω)(t, s) = PImω(t, s) + sPH(Imω)(t, s)

relative to the bi-graded complex (Imω, d̃| Imω). Notice that P∧ V⊗S V (t, s) =
(1 + s)PIm d̃ + 1 by Lemma 4.6.2, so we obtain

(1 + s)PK = (1 + s)
(
P∧ V⊗S V − PIm d̃ − PImω + Pker(d̃| Imω)

)
= sP∧ V⊗S V + 1− sPImω + sPH(Imω)

= sPcokerω + 1 + sPH(Imω).

The equalities

PH(Imω)(t, s) = t2 + t2s
∑
i≥0

[Viω1+ωg ]t
g+isi

Pcokerω = 1 + t2s+ (1 + s)(1 + t2s)
∑

1≤j<g
i≥0

[Viω1+ωj ]t
j+isi+

+ (1 + s+ t2s2)
∑
i≥0

[Viω1+ωg ]t
g+i

complete the proof.

Theorem 4.7.10. The Hilbert-Poincaré series PH(U)(t, s) ∈ Rg[[t, s]] of the
cohomology H(Ug, d) is

(1 + t2s)(1 + t2 + t2gs) + (1 + t2s)2
∑

1≤j≤g
i≥0

[Viω1+ωj ]t
j+isi(1 + t2(g−j)s).

Proof. We use Lemma 4.7.5 and the computations of Lemmas 4.7.7 to 4.7.9:

PH(U) = sPker d̃∩kerω+t2s+t2s2Pker d̃∩kerω+Pker d̃/ω ker d̃+t2P∧ V⊗S V/ Imω+Im d̃.
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4.7. THE COHOMOLOGY OF CONFIGURATION SPACES

Let us define the series Qg(t, s, u) in the Grothendieck ring of sp(2g) as:

Qg(t, s, u)
def
=
∑
i,j,n

[grWi+2j H
i+j(Cn(Σg))]t

isjun. (4.21)

Theorem 4.7.11. If g > 0, the series Qg(t, s, u) ∈ Rg[[t, s, u]] is equal to

Qg(t, s, u) =
1

1− u

(
(1 + t2su3)(1 + t2u) + (1 + t2su2)t2gsu2(g+1)+

+ (1 + t2su2)(1 + t2su3)
∑

1≤j≤g
i≥0

[Viω1+ωj ]t
j+isiuj+2i(1 + t2(g−j)su2(g−j+1))

)
.

Proof. Use Lemma 4.7.2 and notice that QK(t, s, u) = PK(tu, su) for any
sub-quotient K of ∧• V ⊗ S• V , thus:

(1− u)Qg =su2Pker d̃∩kerω + t2su3 + t2s2u4Pker d̃∩kerω+

+ Pker d̃/ω ker d̃ + t2uP∧ V⊗S V/ Imω+Im d̃.

From Theorem 4.7.11 and Lemma 4.6.8 we obtain a formula for the mixed
Hodge numbers and for the Betti numbers of Cn(Σg).

Using this techniques, we can perform analogous computation for non-
orientable closed surfaces and for once-punctured orientable surfaces: this
two cases are easier than the our one. The same techniques can be applied
to compute the invariants of configuration spaces of algebraic surfaces with
irregularity zero.
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