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1 Introduction

Welcome to this brief, but I hope complete, tour of the mathematics that
lies behind the motion of a quantum charged particle in a magnetic �eld.
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It may seem that choosing a constant �eld may simplify too much the
problem hiding most of the properties that should come out from the general
case. It will be clear that the bigger part of the properties arise, also, from
the constant case.

All the study will be centered on gauge transforms, unitary groups of
operators and assonances with the harmonic oscillator.

But let me now introduce the basic concepts, some of them already seen
in the course �Introduzione alle Meccaniche Superiori�, that will be used for
my talk.

1.1 Preliminaries

One of the key that will bring us properties and simpli�cations lie behind
this �rst de�nition. To lighten notations and computations, let me assume
(only for a while) ~ = 1.

Definition 1.1. A one-parameter unitary group is a function t → U(t)
from the real numbers into the set of bounded operators on an Hilbert space
H with the following properties:

1. U(t) is a unitary operator ∀ t ∈ R, i.e. ‖Uψ‖ = ‖ψ‖ ∀ψ ∈ H and
UH = H;

2. U(0) = 1, U(t)U(s) = U(t+ s) ∀ s, t ∈ R;

3. limt→0 U(t)ψ = ψ ∀ ψ ∈ H.

Definition 1.2. Let U(t) be a one-parameter unitary group in a Hilbert
space H. The in�nitesimal generator H of the unitary group is the linear
operator given by:

Hψ = i lim
t→0

U(t)− 1

t
ψ (1)

on a domain consisting of all vectors ψ for which this limit exists.

The domain D(H) of the in�nitesimal generator can be shown to be dense
in H.

The quantum time evolution leads to the de�nition of a linear time evol-
ution operator U(t) that satis�es the de�nitions given above, in particular
we can show that

Theorem 1.1. If U(t) is a unitary group with generator H in the sense
speci�ed above and if ψ(t) = U(t)ψ, then ∀ψ ∈ D(H), ψ is a solution of the
Cauchy problem {

i d
dt
ψ(t) = Hψ(t)

ψ(0) = ψ
(2)
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and D(H) is invariant under the time evolution.

Proof. Supposing ψ in D(H), limit (1) exists. The unitarity of U(t) permits
us to interchange its action with the limit. Thus, with the unitary group
properties, we obtain that

U(t) lim
h→0

U(h)− 1

h
ψ = lim

h→0
U(t)

U(h)− 1

h
ψ =

= lim
h→0

U(t+ h)− U(t)

h
ψ =

= lim
h→0

U(h)− 1

h
U(t)ψ

so U(t)ψ ∈ D(H), in particular this means that

U(t)D(H) ⊂ D(H), and HU(t)ψ − U(t)Hψ = 0 ∀ψ ∈ D(H)

and the invariance holds.
De�ning ψ(t) = U(t)ψ, follows immediately that

lim
h→0

U(t+ h)− U(t)

h
ψ =

d

dt
ψ

and (2) is satis�ed.

The unitarity of the time evolution operator U(t) states that the scalar
product of two states ψ and ϕ is independent of time, it means that

< ψ(t), ϕ(t) >=< ψ, φ > ∀t ∈ R. (3)

This imply that

0 = i
d

dt
< ψ(t), ϕ(t) >=< ψ(t), Hϕ(t) > − < Hψ(t), ϕ(t) >

so, to have U(t) unitary, we need that H has to be symmetric:

< ψ,Hϕ >=< Hψ,ϕ > ∀ψ, ϕ ∈ D(H).

It is very easy to prove that

Theorem 1.2. A symmetric operator has only real eigenvalues.
If ψ1 and ψ2 are eigenvectors of a symmetric operator H belonging to di�erent
eigenvalues E1 and E2, then ψ1 is orthogonal to ψ2 (< ψ1, ψ2 >= 0).
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If you know a little bit of linear operators theory, you know that the most
important property we can �nd in an operator is the self-adjointness. We
have seen that if U(t) is a one-parameter unitary group, its generator H have
to be symmetric. Stone's Theorem says more:

Theorem 1.3 (Stone's Theorem). If U(t) is a one-parameter unitary group,
then the generator H is a self-adjoint operator. Conversely, if H is a self-
adjoint operator, then H is the generator of a unique one-parameter unitary
group U(t).

The self-adjointness of H give us the possibility to de�ne the exponential
e−iHt as

eAx =
+∞∑
n=0

An xn

n!

and usually the unitary group generated by H is written as

U(t) = e−iHt.

As we already know, time evolution operators are generated by the energy
Hamiltonian H and, at the same time, are strictly connected with unitary
groups. We can see that this notation gives a concrete meaning to the unitary
time evolution operator U(t):

i
d

dt
e−iHtψ = He−iHtψ ∀ψ ∈ D(H)

and if ϕ is an eigenfunction of H with eigenvalue E, then

e−iHtϕ = e−iEtϕ.

An interesting theorem connected with self-adjoints operators states that

Theorem 1.4. If U is a unitary operator and T is self-adjoint on D(T ),
then the operator S = UTU∗ is self-adjoint on D(S) = UD(T ). Moreover,
the unitary groups are related by

Ue−iT tU∗ = e−iSt (4)

To understand better the importance of this last theorem, it's a good
idea to introduce translations groups and Weyl's relations, which will be
very useful in the understanding of the symmetries of the system.
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1.1.1 Translations

Consider a one-dimensional wave function ψ and a scalar a ∈ R, then de�ne

ψa(x) = ψ(x− a). (5)

The translation by a is the mapping

τa : ψ 7−→ ψa, (6)

it's not too di�cult to show that a 7→ τa is a one parameter unitary group
in the sense shown.

If we consider a di�erentiable wave function, a short calculation gives

i
τaψ(x)− ψ(x)

a
= i

ψ(x− a)− ψ(x)

a
−→
a→0
−i d

dx
ψ(x)

that is the generator of the group. Recalling that the quantum Hamiltonian
momentum operator p is usually de�ned −i d

dx
, we may write

τa = e−ipa.

In this particular case, for in�nitely di�erentiable ψ, is easy to see (with a
Taylor series expansion around x) that

τaψ(x) = ψ(x− a) = ψ(x)− aψ′(x) +
a2

2!
ψ′′(x)− · · · =

=
+∞∑
0

an

n!

(
− d

dx

)n

ψ(x) =
∞∑

n=0

(−ipa)n

n!
ψ(x) = e−ipaψ(x).

Recalling the theorem (1.4), taken a real number b, we can de�ne the
operator

µbψ(x) = eixbψ(x) (7)

and, recollecting that the Fourier transform F is such that p = −i d
dx

=
F−1ξF , we can say that µb forms a unitary group with parameter b and gen-
erator −x. In addition, is not di�cult to see that µb describes a translation
in the momentum space, precisely

eixbψ(x)←→ ψ̂(ξ − b). (8)

Remark 1.1. These last unitary groups have straightforward generalizations
to higher dimensions, precisely, if a, b ∈ Rn and p, x are n-dimensional,

e−ip·a = e−ip1a1e−ip2a2 · · · e−ipnan

e−ix·b = e−ix1b1e−ix2b2 · · · e−ixnbn
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1.1.2 Weyl relations

We'll �nd useful some formulas coming from the calculation of the commut-
ator [τa, µb], namely, for all a, b ∈ R,

τaµbψ(x) = τa
(
eibxψ(x)

)
= eib(x−a)ψ(x− a) (9)

µbτaψ(x) = µbψ(x− a) = eibxψ(x− a) (10)

In other word

Theorem 1.5 (First-form Weyl relation). The unitary groups τa and µb

satisfy the relations

τaµb = e−iabµbτa ∀ a, b ∈ R,

that is
e−ipaeixb = e−iabeixbe−ipa ∀ a, b ∈ R,

The Weyl relation we are looking for is equivalent to this, but is expressed
in a more convenient manner. To reach this useful form, we need to reason
as follows.

Let me de�ne the operator

W (t) = τtµte
it2/2. (11)

I say that W (t) form an one-parameter unitary group.

Proof. It su�ces to use the �rst-form Weyl relation both to verify the group
property

W (t)W (s) = τtµtτsµse
i(t2+s2)/2 =

= τte
itsτsµtµse

i(t2+s2)/2 =

= τt+sµt+se
i(t2+2ts+s2)/2 = W (s+ t)

and the unitarity

W ∗(t) = µ−tτ−te
−it2/2 = eit2τ−tµ−te

−it2/2 = τ−tµ−te
it2/2 = W (−t).

Recalling that i d
dt
τtψ = pτtψ and i d

dt
µtψ = (−x)µtψ, we can �nd the

generator of W (t):

i
d

dt
W (t)ψ = pτtµte

it2/2ψ − τtxµte
it2/2ψ + τtµti

2teit2/2ψ =

= pτtµte
it2/2ψ − (x− t)µte

it2/2ψ + τtµt(−t)eit2/2ψ =

= (p− x)pτtµte
it2/2ψ = (p− x)W (t)ψ.
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So in a suitable domain (precisely where is self-adjoint) the generator of
the unitary group W (t) is the operator (p− x). Thus we can write

e−i(p−x)t = e−ipteixteit2/2 = eixte−ipteit2/2.

This calculation can be slightly generalized in the

Theorem 1.6 (Second-form Weyl relation).

e−i(ap−bx) = e−ipaeixbeiab/2 = eixbe−ipaeiab/2

1.2 The angular momentum operator

Classically speaking, considered the position coordinates x ∈ R3 and the
momentum ones p ∈ R3, the angular momentum is

L = x× p = (x2p3 − x3p2, x3p1 − x1p3, x1p2 − x2p1) ∈ R3.

Applying the substitution rule to L, we obtain the quantum angular mo-
mentum operator L = (L1, L2, L3) of a particle in three dimensions

Lj = −i
(
xk

∂

∂xl

− xl
∂

∂xk

)
= (xkpl − xlpk) (12)

where (j, k, l) is a cyclic permutation of (1, 2, 3).
It is not di�cult to see that

[Lj, Lk] = i~Ll

in fact, skipping the development of the calculus, we can see that

[Lj, Lk] = [(xkpl − xlpk), (xlpj − xjpl)] =

= xk[pl, xl]pj + xjpk[xl, pl] =

= i~(−xkpj + xjpk) =

= i~ Ll

1.3 Recalling the harmonic oscillator

The �nal part of this introduction regards the harmonic oscillator, whose
quantum Hamiltonian operator is

Hho = H0 + V (x) = − ~2

2m
∆ +

1

2
mω2‖x‖2

Thanks to the next theorem, the spectrum σ(Hho) consists only of isolated
eigenvalues increasing to in�nity.
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Theorem 1.7. Let V (x) be a continuous function on Rd satisfying V (x) ≥ 0
for all x ∈ Rd and V (x)→∞ as ‖x‖ → ∞. Then

1. H = −∆ + V is self-adjoint on L2(Rd);

2. σ(H) consists of isolated eigenvalues {λn}∞n=1 with λn →∞ as n→∞.

We are mainly interested in the one-dimensional case. It is useful to
rescale the operator through the change of variable

x 7→ y = λx

with some λ > 0. Now, given a wave function ψ(x), we de�ne the scaled
function by

ϕ(y) = ψ(x).

Considering the derivative, we see

d

dx
ψ(x) =

d

dx
ϕ(y) =

d

dy
ϕ(y)

dy

dx
= λ

d

dy
ϕ(y)

and
d2

dx2
ψ(x) = λ2 d2

dy2
ϕ(y),

therefore we can say that

xψ(x) =
y

λ
ϕ(y) and x2ψ(x) =

y2

λ2
ϕ(y).

That is the Schrödinger equation can be described as follows

Hψ(x) =

(
− ~2

2m
λ2 d2

dy2
+
k

2

1

λ2
y2

)
ϕ(y).

If we choose λ =
√

~
mω

, i.e. the value such that

~2

2m
λ2 =

mω2

2

1

λ2
(13)

we have reduced the problem to

Hψ(x) = ~ωHnew ϕ(y) = ~ω
1

2

(
p2

new + y2
)
ϕ(y) (14)

where pnew = −i d
dy
.
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In quantum �eld theory there is a standard way to proceed that is func-
tional also for the study of the harmonic oscillator and that is the real reason
of this section. This way requires the introduction of some new operators, in
primis creation and annihilation ones:

a∗ =
1√
2
(y − ipnew),

a =
1√
2
(y + ipnew).

The following calculation states that

[a, a∗] = aa∗ − a∗a =

=
1

2
((y + ip)(y − ip)− (y − ip)(y + ip)) =

=
1

2
(y2 − iyp+ ipy + p2 − y2 − iyp+ ipy − p2) =

=
1

2
(−2i[p, y]) = 1

proving the equation
[a, a∗] = aa∗ − a∗a = 1. (15)

Thus we can rewrite the Hamiltonian Hnew in terms of a and a∗ as follows:

Hnew = a∗a+
1

2
.

This expression is said in normal form because a∗ appears to the left of a.
De�ning the number operator as

N = a∗a,

we have Hnew = N + 1
2
. The importance of N is that, using (15), it satis�es

the relations

Na = (aa∗ − 1)a = aa∗a− a = a(N − 1) (16)

Na∗ = a∗aa∗ = a∗(a∗a+ 1) = a∗(N + 1) (17)

giving us a sort of algebra of the operators.
We have reduced the problem to the search of the eigenvalues of N that

has the two wonderful properties written above.

Theorem 1.8. We have
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1. N ≥ 0;

2. σ(N) = Z+ and each eigenvalue has multiplicity 1.

Proof. 1. Because a∗ is the adjoint of a, we have

< ψ,Nψ >=< aψ, aψ >= ‖aψ‖2 ≥ 0

for all ψ.

2. From the previous point, Nψ = 0⇐⇒ aψ = 0. Note that the function

ψ0 = c0e
− y2

2 ,

where c0 is a constant, is the unique family of solution of

aψ =
1√
2

(
y +

d

dy

)
ψ = 0,

and hence Nψ = 0. Thus, normalizing it with c0 = (2π)−
1
4 , ψ0 is the

ground state. The commutation relation (17) implies

Na∗ψ0 = a∗(N + 1)ψ0 = a∗Nψ0 + a∗ψ0 = 0 + a∗ψ0 = a∗ψ0

and, generalizing by induction,

N(a∗)nψ0 = a∗(N + 1)(a∗)n−1ψ0 =

= a∗N(a∗)n−1ψ0 + (a∗)nψ0 =

= a∗(n− 1)(a∗)n−1 + (a∗)nψ0 =

= n(a∗)nψ0

Hence
φn = (a∗)nψ0

is an eigenfunction of N with eigenvalue n.

If n = 0 we have
‖φ0‖2 =< ψ0, ψ0 >= 1 = 0!

and, similarly, if n = 1 we have

‖φ1‖2 = < a∗ψ0, a
∗ψ0 >=< ψ0, aa

∗ψ0 >=

= < ψ0, (1 +N)ψ0 >=< ψ0, ψ0 +Nψ0 >=

= < ψ0, ψ0 + 0 >= 1 = 1!
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Therefore, by induction,

‖φn‖2 = < (a∗)nψ0, (a
∗)nψ0 >=< ψ0, a

n(a∗)nψ0 >=

= < ψ0, a
n−1aa∗(a∗)n−1ψ0 >=

= < ψ0, a
n−1(1 +N)(a∗)n−1ψ0 =

= < ψ0, a
n−1(a∗)n−1ψ0 + an−1N(a∗)n−1ψ0 >=

= < ψ0, a
n−1(a∗)n−1ψ0 + (n− 1)an−1(a∗)n−1ψ0 >=

= n < ψ0, a
n−1(a∗)n−1ψ0 >= n‖φn−1‖2 =

= n(n− 1)! = n!

so we can normalize φn and �nd the normalized eigenfunction of N
with eigenvalue n

ψn =
1√
n!

(a∗)nψ0. (18)

It remains only to show that these are the only eigenfunctions. It
follows from the commutation relations (in a way similar as the above)
that if ψ is any eigenfunction of N with eigenvalue λ > 0, then

Namψ = (λ−m)amψ.

Choosingm such that λ−m ≤ 0 we contradict the positivity ofN unless
amψ = 0. But, recalling the initial remarks of this point's demonstra-
tion, this implies that

ajψ0 = cψ0 (19)

for some integer j and a proper constant c. Reapplying the equation
(19) we get λ = j. If we �nally apply (a∗)j to the equation, using the
commutation relations, we can show that ψ = c′ψj for another constant
c′, so we are done.

One direct consequence of this theorem is that

σ(Hnew) =

{
Enew

n = n+
1

2
: n ∈ N

}
with eigenfunctions ϕn = 1√

n!
(a∗)nϕ0 or, more precisely,

ϕn(y) =
1

π
1
4

√
2nn!

Hn(y)e−
y2

2 ,

11



where Hn are the Hermite polynomials of order n (they may be de�ned by
Hn(x) = (−1)nex2 dn

dxn e
−x2

).

Finally, coming back to the spectrum of the original harmonic oscillator
Hamiltonian, we �nd

σ(H) =

{
En = ~ω

(
n+

1

2

)
: n ∈ N

}
with eigenfunctions obtained rescaling the ϕn's:

ψn(x) =
1√
2nn!

(mω
π~

) 1
4
Hn

(√
mω

~
x

)
e−

mω
2~ x2

2 Quantum charged particle in a magnetic �eld

2.1 First observations about quantummechanics of mag-

netic �elds

A simple way to introduce magnetic �elds in quantum mechanics is consid-
ering the usual transition procedure from classical to quantum Hamiltonian.

Prefacing that the electric �eld is described by a scalar potential �eld and
so it can be incorporated in the potential function V (x), let's analyze what
happens in the presence of a magnetic �eld.

Classically speaking, a magnetic �eld ~B(x) can be described by a vector

potential ~A(x) such that
~B(x) = ∇× ~A(x)

so that we have automatically ∇ · ~B(x) = 0.
The general Hamiltonian function H(p, x) for a particle in a magnetic �eld
is de�ned through this vector potential:

H(p, x) =
1

2m

(
p− q

c
~A(x)

)2

where q is the charge of the particle and c is the light speed.
Looking at the formal analogy used to switch from classical to quantum

mechanics, we can de�ne Hamiltonian operator sendingH(p, x) 7→ H(−i~∇, x)
as

H =
1

2m

(
−i~∇− q

c
~A(x)

)2

. (20)

Careful readers, now, can argue that in this formal change the corres-
pondence between the classical and quantum structure is lost. We can better
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notice it expanding the square in both cases:

C.
(
p− q

c
~A(x)

)2

= p2 − 2
q

c
p · ~A(x) + ~A(x)2 (21)

Q.
(
p− q

c
~A(x)

)2

= p2 − q

c
p · ~A(x)− q

c
~A(x) · p+ ~A(x)2 (22)

The two addendum of the �rst equation q
c
p · ~A(x) + q

c
~A(x) · p represent the

same function while in the quantum case they may be di�erent operators, in
fact unless ∇ · ~A = 0

p · ~A(x)ψ(x) = −i~∇ · ~A(x)ψ(x) =

= −i~(∇ · ~A(x) + ~A(x) · p)ψ(x) 6= ~A(x) · pψ(x).

The non commutativity of two operators leads to the presence of an uncer-
tainty principle and establish a relation between them.

2.2 Hints in the non uniqueness of the wave function

and Gauge invariance

One key point of this study, regards the analysis and the comprehension of
a bug (at least for certain aspects) that is connected with the given inter-
pretation of the quantum mechanics itself, more precisely the heart of the
question arise in the choice of normalized wave function.

In fact, if ψ is a normalized wave function, the multiplication with a phase
factor in {eiλ : λ ∈ R} doesn't change the probability density represented
by ‖ψ‖2.

Now, look ad the choice of a vector potential for the magnetic �eld. A
particularly important step, in mathematics, is the search for existence and
uniqueness. Is the magnetic �eld representation unique?

One of the property of the curl is that for any di�erentiable function f ,

∇×∇f = 0.

Looking at the de�nition given, is clear that take the vector potential

~A′ = ~A+∇f

is the same that take ~A. So, if the model is correct, the vector potentials ~A
and ~A′ describe the same magnetic �eld. This fact is commonly indicated
saying that �the two vector potentials are related by a gauge transformation�.
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This freedom in the choice of the vector potential is often used to simplify
the mathematical description of the system. Frequent, in three dimensions,
is the choice of the vector potential

~A =

∫ 1

0

s ~B(xs)× x ds (23)

that is said to be in the Poincaré gauge, i.e. is characterized by

~A(x) · x = 0.

Another frequently used gauge is the Coulomb gauge, characterized by

∇ · ~A(x) = 0.

Remark that a vector potential with this property has also the property that
p · ~A(x) = ~A(x) · p.

Clearly, it is fundamental to understand the way the gauge transforma-
tions a�ect the Schrödinger equation.

Suppose there is no scalar potential V (x) and apply a gauge transforma-
tion ∇f where f is a real di�erentiable function. This transformation, some-
how, may change the description. We can consider, for example, (putting
~ = m = 1) the Hamiltonian operator

H =
1

2
(−i∇− (∇f))2 (24)

that describes the free motion after a gauge transformation (in fact ∇f cor-
responds to a �eld of zero strength).
Let ψ be a solution of the free Schrödinger equation and consider

ϕt(x) = eif(x)ψt(x). (25)

With a simple calculation is easy to see that

(−i∇− (∇f(x)))2ϕt(x) = −eif(x)∆ψt(x)

and so

i
∂

∂t
ϕt(x) = ieif(x) ∂

∂t
ψt(x) =

= −1

2
eif(x)∆ψt(x) =

= (−i∇− (∇f(x)))2ϕt(x).
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It means that ϕt is a solution of the equation (24).

Summarizing, both ϕ and ψ describe the same physical state of the free
particle but they solve di�erent equations. Therefore, in the next analysis we
must �nd invariant real observable to try a physical check of this model and
to give a reasonable explanation of the gauge invariance. The point is that
gauge invariance is a big useful properties but for a consistent model we need
other properties, such as suitable observables and (in general) uniqueness of
solutions...

2.3 Preparatory analysis of the magnetic �eld

We want to analyze the energy spectrum in a constant magnetic �eld. Pro-
paedeutic for the analysis is the study of a general magnetic �eld with con-
stant direction and of how we can reduce it in an useful form.

Hence, if the direction of ~B(x) is independent of x ∈ R3, we can choose a
convenient coordinate system in such a way that

~B(x) = (0, 0, B(x)).

Obviously this imply that

0 = ∇ · ~B =
∂B1

∂x1

+
∂B2

∂x2

+
∂B3

∂x3

=
∂B3

∂x3

or, in other words, that B(x) is independent from x3! Thus, we have prac-
tically a bi-dimensional situation invariant with respect to the translations
along the third axis. So, in our formalism, is su�cient to consider

~A(x) = (A1(x1, x2), A2(x1, x2), 0)

then

B(x1, x2) =
∂

∂x1

A2(x1, x2)−
∂

∂x2

A1(x1, x2).

Under this hypothesis the Schrödinger equation can be written as

i
∂

∂t
ψt(x) =

(
1

2

(
p1 −

q

c
A1

)2

+
1

2

(
p2 −

q

c
A2

)2

+
1

2
p2

3

)
ψt(x)

and the wave function can be factorized as follows

ψt(x) = φt(x1, x2)ϕt(x3). (26)
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This lead at the conclusion that ψ is a solution if it is true that, assumed
~A′(x1, x2) = (A1(x1, x2), A2(x1, x2)), i d

dt
ϕt(x3) = −1

2
d2

dx2
3
ϕt(x3)

i d
dt
φt(x1, x2) = 1

2

(
−i∇− q

c
~A′(x1, x2)

)2

φt(x1, x2)
(27)

Recalling the (23), we may choose the Poincaré gauge and write

~A(x1, x2) = (−x2, x1)

∫ 1

0

sB(xs)ds.

Remark 2.1 (In�uence of the vector potential). It may happen (and it hap-
pens frequently) that the vector potential is nonzero even in regions where the
magnetic �eld strength is null. Assuming that the two-dimensional magnetic
�eld B(x) is nonzero only in some bounded region and has a non-vanishing
�ux, we have ∫

B(x)d2x 6= 0.

Applying the Stoke's theorem we obtain∮
~A(x) · d~s =

∫
∇× ~A(x)d2x =

∫
B(x)d2x,

where the circulation is taken along a large circle outside the support of B.
Thus the vector potential cannot vanish everywhere on the circle, no matter
which gauge we choose.
The really interesting thing is that the vector potential in�uence the wave
function also in regions that are far away from the support of B.

Keeping all in mind, let us assume the constance of the magnetic �eld.
As already said, we can reduce the problem in two dimensions. Suppose that
for all x ∈ R2 the constant �eld strength is B(x) ≡ c

q
B ∈ R, then choosing

the Poincaré gauge we have

~A(x) =

c
q
B

2
(−x2, x1) (28)

that, in this case, coincide with the Coulomb gauge.

Remark 2.2. Thanks to gauge invariance, we may choose a lot of vector
potential for the same �eld, for example, (− c

q
Bx2, 0) or (0, c

q
Bx1).

Recalling the notation used in the equation (26), is known how to �nd
ϕt, then we concentrate our attention on the φt and on the equation (27).
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2.4 Energy spectrum of a charged quantum particle in

a constant magnetic �eld

We want to analyze the Schrödinger equation

i
d

dt
φt(x) =

(
1

2

(
p1 +

B

2
x2

)2

+
1

2

(
p2 −

B

2
x1

)2
)
φt(x). (29)

Introducing the velocity operator v = (v1, v2) where

v1 = p1 +
B

2
x2, (30)

v2 = p2 −
B

2
x1. (31)

we can rewrite the Hamiltonian operator for a charged particle in a bi-
dimensional constant magnetic �eld obtaining

H =
1

2

(
v2

1 + v2
2

)
.

If we de�ne, as usual, the time-dependent position operator as x(t) =
eiHtxe−iHt we �nd

d

dt
xi(t) = eiHti[H, xi]e

−iHt = vi(t) (32)

in fact, noting that j 6= i⇒ [v2
j , xi] = 0, we have

i[H, xi] =
i

2
[v2

i , xi] =

=
i

2
(vi[vi, xi] + [vi, xi]vi) =

=
i

2
(vi[pi, xi] + [pi, xi]vi) =

=
i

2
(vi(−i) + (−i)vi) = vi.

Very interesting is the fact that under the presence of the magnetic �eld
the velocity operator's components don't commute but are canonically con-
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jugate variables, like position and momentum operators:

[v1, v2] =

[
p1 +

B

2
x2, p2 −

B

2
x1

]
=

= −B
2

[p1, x1] +
B

2
[x2, p2] = iB;

notice also that

[H, v1] =

[
1

2
(v2

1 + v2
2), v1

]
=

1

2
([v2

1, v1] + [v2
2, v1]) =

=
1

2
(v2

2v1 − v1v
2
2) =

1

2
(v2(v1v2 − iB)− (iB + v2v1)v2) =

= −iBv2,

[H, v2] =

[
1

2
(v2

1 + v2
2), v2

]
=

1

2
([v2

1, v2] + [v2
2, v2]) =

=
1

2
(v1(iB + v2v1)− (v2v1 − iB)v1) =

= iBv1.

Now we are at the turning point, and we will soon understand why in the
�rst section we have recalled the quantum harmonic oscillator. Let us write
in parallel two systems{

H = 1
2
(v2

1 + v2
2)

[v1, v2] = iB

{
Hho = 1

2
(p2 + x2)

[x, p] = i

After this parallelism we must await that the bi-dimensional magnetic
operator and the one-dimensional harmonic oscillator operator have essen-
tially the same spectrum of eigenvalues. Not only, we can try to adapt the
procedure used for the harmonic oscillator to our system.

First of all, de�ne a sort of annihilation and creation operators

A =

√
1

2|B|
(v1 + iv2)

A∗ =

√
1

2|B|
(v1 − iv2)
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Looking at the commutator

A∗A =
1

2|B|
(v1 + iv2)(v1 − iv2) =

=
1

2|B|
(v2

1 + v2
2 + i(v1v2 − v2v1)) =

=
1

2|B|
(v2

1 + v2
2 −B)

AA∗ =
1

2|B|
(v1 − iv2)(v1 + iv2) =

=
1

2|B|
(v2

1 + v2
2 +B)

we �nd
[A,A∗] = 1.

Assuming B>0, the Hamiltonian can be written as

H = B

(
A∗A+

1

2

)
(33)

and, exactly with the same argument used for the harmonic oscillator, we
can conclude that H has the eigenvalues

En = B

(
n+

1

2

)
, n ∈ N. (34)

Thus, we can try to search the nontrivial low-energy solution ψ0 such that

Aψ0 = 0.

To �nd them we have to solve the �rst-order di�erential equation(
−i ∂
∂x1

+
B

2
x2 +

∂

∂x2

− iB
2
x1

)
ψ0(x) = 0, (35)

but is evident that de variables are separated, so we can take

ψ0(x) = γ1(x1)γ2(x2)

and factorize the equation obtaining the conditions −i
(

∂
∂x1

+ B
2
x1

)
γ1(x1) = 0

−i
(

∂
∂x2

+ B
2
x2

)
γ2(x2) = 0

(36)
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that are identical and can be compared with the same for the ground state
of the harmonic oscillator giving

γ1(x) = γ2(x) = e−
B
4

x2

and, therefore,

ψ0(x) = e−
B
4 (x2

1+x2
2) (37)

so that we have

Hψ0 =
B

2
ψ0.

Now, computing ∫
R2

ψ0(x)d
2x,

we can normalize the function obtaining

ψ0(x) =

√
B

2π
e−

B
4
‖x‖2 . (38)

For B < 0, just exchange A with A∗ and repeat the same reasoning. We
have proved that

Theorem 2.1. The two-dimensional constant magnetic �eld Hamiltonian
operator

H =
1

2

(
p1 +

B

2
x2

)2

+
1

2

(
p1 +

B

2
x2

)2

has eigenvalues

En = |B|
(
n+

1

2

)
, n ∈ N.

A normalized ground state, with energy E0 = B
2
, is given by

ψ0(x) =

√
|B|
2π

e−
|B|
4
‖x‖2 .

2.5 Symmetries and invariance. Final considerations

On a formal level, the harmonic oscillator and the constant magnetic �eld
look very similar. There is a simple correspondence between the compon-
ents of the magnetic �eld velocity operator and the position and momentum
operators of the harmonic oscillator.

Nevertheless, from a physical point of view, the two systems are quite
di�erent. The particle in a constant magnetic �elds (as somehow we have
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just said but we will delve in a moment) has properties which the harmonic
oscillator in phase space does not. In fact, the harmonic oscillator force dis-
tinguishes the coordinate origin as an equilibrium point, while in a magnetic
�eld all points are the same: despite the origin appears to be distinguished
by the properties ~A(0) = (0, 0), this is only due to our particular choice of
~A and does not correspond to a physical property of the system. For every
a = (a1, a2) ∈ R2, taking

α = −B
2

(a2x1 − a1x2)

as a gauge transformation, we will obtain

~Aα = ~A+∇α =
B

2
(−x2 + a2, x1 − a1)

that vanishes in the point a. Because every gauge transformation leads to a
physically equivalent description, every point is the same as the origin.

Remark 2.3. This reasoning can be applied also to the free particle. No
matter where the particle is, the evolution remains the same!

This translational symmetry will brings to the conclusion that all the
eigenvalues En in the constant magnetic �eld are in�nitely degenerate. So
let us analyze this symmetry (and perhaps compare it with the rotational
symmetry of the system...).

2.5.1 Remarks on classical constant magnetic �eld motion

To analyze the translational symmetry is useful a comparison with the cor-
respondent classical motion. The classical Hamiltonian equations

ẋ1(t) = ∂
∂p1
H(x, p) = p1(t) + B

2
x2(t)

ẋ2(t) = ∂
∂p2
H(x, p) = p2(t)− B

2
x1(t)

ṗ1(t) = − ∂
∂x1
H(x, p) = B

2

(
p2(t)− B

2
x1

)
ṗ2(t) = − ∂

∂x2
H(x, p) = B

2

(
p1(t) + B

2
x2

)
can be rewritten as the (evidently) translationally invariant system{

ẍ1(t) = Bẋ2(t)
ẍ2(t) = −Bẋ1(t)

From the conservation of energy, realizing that

H =
1

2

(
ẋ2

1 +Bẋ2
2

)
,
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we can see that the absolute value of the velocity is constant and, solving the
system, we �nd a circular motion with constant angular velocity. Namely, if
the initial velocity is (ẋ1(0), ẋ2(0)) = (v1, v2),{

ẋ1(t) = v1 cos(Bt) + v2 sin(Bt)
ẋ2(t) = v2 cos(Bt)− v1 sin(Bt)

then for the position we have{
x1(t) = x̄1 − 1

B
ẋ2(t)

x2(t) = x̄2 + 1
B
ẋ1(t)

(39)

Thus, the classical orbit of the particle is a circle with center (x̄1, x̄2) and

radius ‖v‖
|B| .

2.5.2 Symmetries and eigenvalues

Looking at the equation (39) we can deduce the quantum operator that
correspond to the center of the classical orbit:{

x̄1 = x1 + 1
B
v2 = 1

2
x1 + 1

B
p2

x̄2 = x2 − 1
B
v1 = 1

2
x2 + 1

B
p1

Is interesting that

[v1, x̄1] =
[
p1 + B

2
x2,

1
2
x1 + 1

B
p2

]
= 1

2
([p1, x1] + [x2, p2]) = 0

[v1, x̄2] =
[
p1 + B

2
x2,

1
2
x2 − 1

B
p1

]
= p1x2 = 0

and more precisely that, if i, j ∈ {1, 2},

[vi, x̄j] = 0 and so [H, x̄j] = 0.

For the Quantum Nöther theorem, this implies that x̄j are conserved quant-
ities.

On the other hand we have a canonical commutation relation:

[x̄1, x̄2] = [
1

2
x1 +

1

B
p2,

1

2
x2 −

1

B
p1] =

1

2B
([p1, x1] + [p2, x2]) = −i 1

B
.

This fact holds a very deep signi�cance for the symmetry. In order to under-
stand it let us calculate the action of the transformations generated by x̄1 on a
general state ψ(x1, x2). The operator x̄i generate the unitary transformation
e−iax̄i . Let us consider x̄1, recalling the section �1.1.1, we have

e−iax̄1ψ(x1, x2) = e−i a
2
x1−i a

B
p2ψ(x1, x2) =

= e−i a
2
x1e−i a

B
p2ψ(x1, x2) =

= e−i a
2
x1ψ

(
x1, x2 −

a

B

)
.

22



Hence the transformation generated by x̄1 is made up a shift in the variable
x2 and a multiplication by a phase factor that change the momentum p1 of the
particle but non its state. In particular, because of the commutation between
v1 and x̄1, the value of the velocity in the x1 direction remains unchanged.

Remark 2.4. A gauge transformation that shifts the vector potential to the
point (0, a

B
) cancels the phase factor caused by this translation and con-

sequently we have the invariance under translations.

The transformation e−ibx̄2 , in the same way, translate the wave function
by − b

2
in the direction of x1 and multiply a phase factor e−i b

2
x2 .

We can �nally say in what sense the operator x̄ = (x̄1, x̄2) generate trans-
lations.

Definition 2.1. For an arbitrary w = (w1, w2) ∈ R2 we can de�ne the
unitary operator

e−iBx̄×w = e−iB(x̄1w2−x̄2w1).

This operator shifts a wave packet by w in position space and at the same
time adds the vector ~A(w) = B

2
(−w2, w1) to the momentum.

In fact, because of the commutativity of x× w and p · w, we have

e−iBx̄×wψ(x) = e−i B
2

x×we
1
B

p·wψ(x) =

= e−i B
2

x×wψ(x− w) =

= e−ix· ~A(w)ψ(x− w)

Like above, we can say that the translation we have just described changes
the wave packet but doesn't change the velocity (because of the commutation
between x̄ and v). In other words the shift in position space changes the

velocity from p− ~A(x0) to p− ~A(x0 +w), that in the constant magnetic �eld

is the same as ~A(x0) + ~A(w), but the simultaneous shift in the momentum
space cancels precisely that change preserving the velocity constant. At the
same time, the transformation that we are doing indirectly on the vector
potential is essentially a gauge, so the magnetic �eld remains the same.

The vector potential is not translationally invariant, there is only invari-
ance up to gauge transformation. Fortunately all the physical measurable
quantities do not depend on the choice of the gauge and in particular the
energy of the state is the same that of a shifted state.

Let ψ be an eigenfunction of H, then for some n

Hψ = Enψ.
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Because of the commutativity between H and x̄ we have

He−iax̄jψ = e−iax̄jHψ = Ene
−iax̄jψ,

so the shifted eigenfunction is again an eigenfunction with the same energy.
Starting from the ground state eigenfunction, we have in�nitely many

translated eigenfunction with the same energy and the same holds for every
eigenfunction for every energy level. Therefore the ground state and all the
other eigenvalues have in�nite multiplicity.

The last point apropos of the symmetries regard velocity operator. Like
x̄, also v1 and v2 generate unitary transformations:

e−iav1ψ(x1, x2) = e−iap1−i aB
2

x2ψ(x1, x2) =

= e−i aB
2

x2ψ(x1 − a, x2)

and similarly

e−iav2ψ(x1, x2) = e−i aB
2

x1ψ(x1, x2 − a).

Hence they generate translations in the direction of the coordinate xi. Now,
because of the non commutativity between Hamiltonian operator and vi,
there is a change in the state of the particle. The canonical conjugation
shows that the transformation generated by v1 change the values of v2, on
the other hands the fact that vi and x̄j commutes causes that the classical
center x̄ remain unchanged under this translations!

Recall for a while the equation (29), expanding the squares we arrive at
the following expression

H =
1

2
(p2

1 + p2
2) +

1

2

(
B

2

)2

(x2
1 + x2

2)−
B

2
(x1p2 − x2p1).

In the last term we can recognize the momentum operator L3. The other
summands represent the Hamiltonian of a two-dimensional harmonic oscil-
lator with frequency ω = B

2
:

H2ho(w) =
1

2
(p2 + ω2x2).

Hence the Hamiltonian operator in a constant bi-dimensional magnetic
�eld can be written as

H = H2ho

(
B

2

)
− B

2
L3.
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We know from the theory that [H2ho, L3] = 0 and so

[H,L3] = 0.

As a consequence the canonical angular momentum L3 is a constant of mo-
tion. This is a very important issue because it is involved in the spherical
symmetry of the constant magnetic �eld Hamiltonian, property that is cent-
ral for the possibility of �nding the solution of the equations in the case of
the constant magnetic �eld letting us move in a way similar to the hydrogen
atom and the spherical harmonic oscillator.

Moreover, the vector potential ~A(x) = B
2
(−x2, x1) satis�es the relation

p · ~A(x) =
B

2
L

showing that also p· ~A is a conserved quantity. It means, for example, that for
a particle located at time 0 at the origin, the canonical angular momentum
is 0, so the canonical momentum has to be always orthogonal to the vector
potential.

3 Hints on the time evolution in a constant

magnetic �eld

Notice that the solutions of equation (39){
x1(t) = x̄1 + 1

B
v1 sin(Bt)− 1

B
v2 cos(Bt)

x2(t) = x̄2 + 1
B
v1 cos(Bt) + 1

B
v2 sin(Bt)

can be seen, interpreting x̄j and vj as quantum observables, as the solutions
of the quantum evolution equation for the observables

xj(t) = eiHtxje
−iHt (40)

given by
d

dt
xj(t) = i[H, xj(t)]. (41)

Proof. It comes directly from the comparison between the time-derivative of
xj {

d
dt
x1(t) = v1 cos(Bt) + v2 sin(Bt)

d
dt
x2(t) = −v1 sin(Bt) + v2 cos(Bt)

(42)
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and the commutators

i[H, x1(t)] =
1

B
i[H, v1] sin(Bt)− 1

B
i[H, v2] cos(Bt) =

=
1

B
Bv2 sin(Bt)− 1

B
(−Bv1) cos(Bt) =

= v1 cos(Bt) + v2 sin(Bt)

i[H, x2(t)] =
1

B
i[H, v1] cos(Bt) +

1

B
i[H, v2] sin(Bt) =

=
1

B
Bv2 cos(Bt) +

1

B
(−Bv1) sin(Bt) =

= −v1 sin(Bt) + v2 cos(Bt)

We can hence write the time-evolution of the velocity observables vj(t) =
eiHtvje

−iHt as follow{
v1(t) = v1 cos(Bt) + v2 sin(Bt)
v2(t) = −v1 sin(Bt) + v2 cos(Bt)

(43)

in agreement with the classical ones and in complete analogy with the x(t)
and p(t) operators in the harmonic oscillator dynamics.

Only one last curiosity regards the analysis of the time-evolution of a
state shifted by e−iav1 (we consider only v1 for simplicity). This group of
operators, as we have already said, generates translations in the x2 direction
leaving invariant the center of motion (x̄1, x̄2).
If ψ(x1, x2) is an arbitrary initial state, its time-evolution is given by

ψt(x1, x2) = e−iHtψ(x1, x2).

Shifting ψ, we obtain

e−iHte−iav1ψ(x1, x2) = e−iHte−iav1eiHt e−iHtψ(x1, x2) =

= e−iav1(−t)ψt(x1, x2) =

= e−ia cos(Bt)v1+ia sin(Bt)v2ψt(x1, x2)

and, using the Weyl relation for the canonically conjugate operators v1 and
v2, namely

eia1v1+ia2v2 = eia1a2
B
2 eia1v1eia2v2 ,
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it becomes

e−ia cos(Bt)v1+ia sin(Bt)v2ψt(x1, x2) =

= e−i a2B
2

cos(Bt) sin(Bt)e−ia cos(Bt)v1eia sin(Bt)v2ψt(x1, x2) =

= e−i a2B
2

cos(Bt) sin(Bt)e−i aB
2

cos(Bt)x2e−ia cos(Bt)p1e−i aB
2

sin(Bt)x1eia sin(Bt)p2ψt(x1, x2) =

= e−i aB
2

cos(Bt)x2e−i aB
2

sin(Bt)x1e−ia cos(Bt)p1eia sin(Bt)p2ψt(x1, x2) =

= e−i aB
2

(sin(Bt)x1+cos(Bt)x2)ψt(x1 − a cos(Bt), x2 + a sin(Bt)).

If we consider as initial state the centered ground state

ψt(x) = e−i B
2

te−
B
4

x2

,

its shifting ϕt(x) = e−iav2ψt(x) is a Gaussian function centered at x0 = (a, 0).
Classically speaking we have a particle initially at rest at the origin that
gets shifted toward x0 in a way that leave the center of the orbit invariant.
Therefore the shifted particle must have the initial velocity v = (0,−aB)
and hence it performs the circular motion xt = a(cos(Bt),− sin(Bt)) with
velocity ẋt = −aB(sin(Bt), cos(Bt)).
According to the classical equations of motion, the canonical momentum of
the particle is

pt = ẋt + ~A(xt) =
B

2
(−x̄2, x̄1) +

1

2
ẋt =

=
1

2
ẋt = −aB

2
(sin(Bt), cos(Bt)).

We have a similar behavior in the quantum mechanical solution:

ϕt(x) = ei B
2

teipt·x−B
4

(x−xt)2 = e(ipt·x)ψt(x− xt),

that is, a Gaussian function centered at xt with average momentum pt.
With the translation operators eiaxi and eiavi we can prepare an initial

state with an arbitrary velocity at an arbitrary position if we start with a
centered initial state with average velocity 0.

References

[CTDL06] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum mechanics.
Wiley-Interscience, 2006.

[Gre01] W. Greiner. Quantum mechanics, an introduction. Springer, 2001.

27



[GS06] S. J. Gustafson and I. M. Sigal. Mathematical Concepts of
Quantum Mechanics. Springer, 2006.

[LL91] L. D. Landau and E. M. Lifschitz. Vol. 3 - Quantum mechanics
- non-relativistic theory. Pergamon, 1991.

[MR99] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and
Symmetry: a basic exposition of classical mechanical systems.
Springer, 1999.

[Tha99] B. Thaller. Visual quantum mechanics. Springer, 1999.

[WP] Wikipedia (http://www.wikipedia.org). Web site.

28


	Introduction 
	Preliminaries
	Translations
	Weyl relations

	The angular momentum operator
	Recalling the harmonic oscillator

	Quantum charged particle in a magnetic field
	First observations about quantum mechanics of magnetic fields
	Hints in the non uniqueness of the wave function and Gauge invariance
	Preparatory analysis of the magnetic field
	Energy spectrum of a charged quantum particle in a constant magnetic field
	Symmetries and invariance. Final considerations
	Remarks on classical constant magnetic field motion
	Symmetries and eigenvalues


	Hints on the time evolution in a constant magnetic field
	References

