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Linear (vector) systems and linear matrix equations

Problem: solve the linear problem

Ax = b or T1X+XT2 = B

A x = b

T1 X + X
T2

= B

Remark: In discretizing PDEs with tensor bases, the two problems may be

mathematically equivalent !
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The Poisson equation

−uxx − uyy = f, in Ω = (0, 1)2

+ Dirichlet b.c. (zero b.c. for simplicity)
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The Poisson equation

−uxx − uyy = f, in Ω = (0, 1)2 + Dirichlet zero b.c.

FD Discretization: Ui,j ≈ u(xi, yj), with (xi, yj) interior nodes, so that

uxx(xi, yj) ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
=

1

h2
[1,−2, 1]




Ui−1,j

Ui,j

Ui+1,j




uyy(xi, yj) ≈
Ui,j−1 − 2Ui,j + Ui,j+1

h2
=

1

h2
[Ui,j−1, Ui,j , Ui,j+1]




1

−2

1




−T1U−UT⊤
1 = F, Fij = f(xi, yj), T1 = 1

h2 tridiag(1,−2, 1)

Lexicographic ordering: U→ u = [U11, ...,Un,1,U1,2, . . . ,Un,2, . . .]⊤

Au = f A = −I ⊗ T1 − T1 ⊗ I, f = vec(F ),

((M ⊗N) Kronecker product, (M ⊗N) = (Mi,jN))
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Computational considerations

T1U+UT2 = F, Ti ∈ Rni×ni

Au = f A = I ⊗ T1 + T2 ⊗ I ∈ Rn1n2×n1n2
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Discretization of more complex domains (with Y. Hao)

−uxx − uyy = f, in Ω

(x, y) ∈ Ω, x = r cos θ, y = r sin θ

(r, θ) ∈ [r0, r1]× [0,
π

4
]

polar grid

♣ Transformed equation in polar coordinates:

−r2ũrr − rũr − ũθθ = f̃ , (r, θ) ∈ [r0, r1]× [0,
π

4
]

Matrix equation after mapping to the rectangle:

Φ2T Ũ + ŨT − ΦBŨ = F̃ ⇔ (Φ2T − ΦB)Ũ + ŨT = F̃
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Discretization of more complex domains (with Y. Hao)

−uxx − uyy = f, in Ω

(x, y) ∈ Ω, x = r cos θ, y = r sin θ

(r, θ) ∈ [r0, r1]× [0,
π

4
]

polar grid

♣ Transformed equation in log-polar coordinates (r = eρ):

−ûρρ − ûθθ = f̂ , (ρ, θ) ∈ [ρ0, ρ1]× [0,
π

4
]

Matrix equation after mapping to the rectangle:

T Û ++ÛT = F̂
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Poisson equation in a polygon with more than 4 edges (with Y. Hao)

♣ Schwarz-Christoffel conformal mappings between polygon Ω and rectangle Π

−uxx − uyy = f, (x, y) ∈ Ω

−ũξξ − ũηη = J f̃ , (ξ, η) ∈ Π

(J Jacobian det of SC mapping)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

With finite difference discretization in Π:

T1U + UT2 = F , F = F̃+b.c., and F̃i,j = (J f̃)(ξi, ηj), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

Poisson equation is the ideal setting for SC mappings!
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More general settings

• Convection-diffusion eqns in a rectangle

(see, e.g., Palitta & Simoncini, 2016)

• Space-Time discretizations via tensorized high order methods

(see, e.g., joint wrk w/ Henning, Palitta and Urban, 2020)

• Galerkin FE discretization of Stochastic PDEs

(see, e.g., joint wrk w/ Powell and Silvester, 2017)

• Isogeometric Analysis

(see, e.g., Sangalli and Tani, 2016)

• ...

... A classical approach, Bickley & McNamee, 1960, Wachspress, 1963

(Early literature on difference equations)
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Numerical solution of the Sylvester equation

AU +UB = G

Various settings:

• Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:

A∗ = URU∗, B = V SV ∗ with R,S upper triangular;

2. Solve R∗
Y + Y S = U∗GV for Y (element-wise);

3. Compute U = UY V ∗

Large A and small B: Column decoupling

1. Compute the decomposition B = WSW−1, S = diag(s1, . . . , sm)

2. Set Ĝ = GW

3. For i = 1, . . . ,m solve (A+ siI)(Û)i = (Ĝ)i

4. Compute U = ÛW−1

Large A and large B: Iterative solution (G low rank)
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Numerical solution of the Sylvester equation

AU +UB = G

Various settings:

• Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:

A∗ = URU∗, B = V SV ∗ with R,S upper triangular;

2. Solve R∗
Y + Y S = U∗GV for Y (element-wise);

3. Compute U = UY V ∗.

• Large A and small B: Column decoupling

1. Compute the decomposition B = WSW−1, S = diag(s1, . . . , sm)

2. Set Ĝ = GW

3. For i = 1, . . . ,m solve (A+ siI)(Û)i = (Ĝ)i

4. Compute U = ÛW−1

• Large A and large B: Iterative solution (G low rank, or G sparse)
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Numerical solution of large scale Sylvester equations

AU +UB = G

with G low rank

• Projection methods

• ADI (Alternating Direction Iteration)

• Data sparse approaches (structure-dependent)

Projection methods

Seek Uk ≈ U of low rank:

Uk =


U

(1)
k


 [ (U

(2)
k

)⊤ ]

with U
(1)
k

,U
(2)
k

tall

Index k “related” to the approximation rank

See, Simoncini, SIREV 2016.
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although

the transformation to a matrix-vector equation [...] allows us to use

the considerable arsenal of numerical weapons currently available for

the solution of such problems.

Peter Lancaster, SIAM Rev. 1970
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Multiterm linear matrix equation. Classical device

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Kronecker formulation
(
B⊤

1 ⊗A1 + . . .+B⊤
ℓ ⊗Aℓ

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : M ⊗ P =















m11P . . . m1nP

.

.

.

.
.
.

.

.

.

mn1P . . . mnnP















and vec(AXB) = (B
⊤

⊗ A)vec(X)

Alternative approaches to the Kronecker form:

• Fixed point iterations (an “evergreen”...)

• Projection-type methods ⇒ low rank approximation

• Ad-hoc problem-dependent procedures

• etc.

Current very active area of research
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Truncated matrix-oriented CG for Kronecker form

Input: A(X) = A1XB1 +A2XB2 + . . .+AℓXBℓ, right-hand side C ∈ Rn×n in

low-rank format. Truncation operator T .

Output: Matrix X ∈ Rn×n in low-rank format s.t. ||A(X)− C||F /||C||F ≤ tol.

1: X0 = 0, R0 = C, P0 = R0, Q0 = A(P0)

2: ξ0 = 〈P0, Q0〉, k = 0 〈X,Y 〉 = tr(X⊤Y )

3: while ||Rk||F > tol do

4: ωk = 〈Rk, Pk〉/ξk
5: Xk+1 = Xk + ωkPk, Xk+1 ← T (Xk+1)

6: Rk+1 = C −A(Xk+1), Optionally: Rk+1 ← T (Rk+1)

7: βk = −〈Rk+1, Qk〉/ξk
8: Pk+1 = Rk+1 + βkPk, Pk+1 ← T (Pk+1)

9: Qk+1 = A(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10: ξk+1 = 〈Pk+1, Qk+1〉

11: k = k + 1

12: end while

13: X = Xk

♣ Iterates kept in factored form! Kressner and Tobler, 2011
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Threshold based truncated CG. n = 100, tol=ǫ ∈ {10−4, 10−6, 10−8}

A = 1
h2 tridiag(−1, 2,−1), M = diag(a1), N = diag(a2), a1 and a2 random vectors
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Projection-type methods. 1

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Given approximation spaces KA, KB ,

X ≈ Xm with vec(Xm) ∈ KB ⊗KA

X is approximated by a low rank matrix !

that is, Xm := VmYmW⊤
m , KA = Range(Vm), KB = Range(Wm)

Galerkin condition:

R := A1XmB1 +A2XmB2 + . . .+AℓXmBℓ − C ⊥ KB ⊗KA

V ⊤
mRWm = 0

Projected matrix equation:

V ⊤
m (A1XmB1 + . . .+AℓXmBℓ − C)Wm = 0

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0
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Projection-type methods. 2

Solve for Y :

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

Then, implicitly generate Xm := VmYmW⊤
m

Procedure generalizes the case ℓ = 2, using the classical Galerkin projection methodology

Optimality property: Palitta and Simoncini, 2020

‖X⋆ −Xm‖A = min
Z=VmY W⊤

m

Y ∈Rm×m

‖X⋆ − Z‖A,

where ‖X‖2A = trace
(∑ℓ

j=1 X
⊤AjXBj

)
.

Crucial issues for effectiveness:

• Choice of spaces KA,KB and their construction. Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

• Solution of the reduced multiterm equation

24



Projection-type methods. 2

Solve for Y :

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

Then, implicitly generate Xm := VmYmW⊤
m

Procedure generalizes the case ℓ = 2, using the classical Galerkin projection methodology

Optimality property: Palitta and Simoncini, 2020

‖X⋆ −Xm‖A = min
Z=VmY W⊤

m

Y ∈Rm×m

‖X⋆ − Z‖A,

where ‖X‖2A = trace
(∑ℓ

j=1 X
⊤AjXBj

)
.

Crucial issues for effectiveness:

• Choice of spaces KA,KB and their construction. Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

• Solution of the reduced multiterm equation

25



Projection-type methods. 2

Solve for Y :

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

Then, implicitly generate Xm := VmYmW⊤
m

Procedure generalizes the case ℓ = 2, using the classical Galerkin projection methodology

Optimality property: Palitta and Simoncini, 2020

‖X⋆ −Xm‖A = min
Z=VmY W⊤

m

Y ∈Rm×m

‖X⋆ − Z‖A,

where ‖X‖2A = trace
(∑ℓ

j=1 X
⊤AjXBj

)
.

Crucial issues for effectiveness:

• Choice of spaces KA,KB and their construction. Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

• Solution of the reduced multiterm equation

26



A “simple” example

AX +XA+MXM = ff⊤, A,M spd, f vector

♣ No available direct methods for the generic case, except Kronecker form

Matrix-oriented CG: X(k) = X
(k)
1 G(k)(X

(k)
1 )⊤

range(X
(k)
1 ) ⊂ Qk = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Qk+1) ≤ dim(Qk) + 2k

Galerkin method: Choose Km = range(Vm) with

V0 = f =: v1 V1 = [v1, Av1,Mv1] =: [v1, v2, v3]

V2 = [V1, Av2,Mv2] =: [v1, v2, v3, v4, v5]

V3 = [V2, Av3,Mv3] =: [v1, v2, v3, v4, v5, v6, v7]

etc.

⇒ Km = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Km) = 2m+ 1

Qk = range(V2k−1 )

Hao and Simoncini, work in progress
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Computational methods for certain structured problems

A particular casea:

AX +XA⊤ +M1XM1 + . . .+MℓXMℓ = F,

with A ∈ Rn×n, Mis with very low rank si, Mi = UiV
⊤
i

Using the Kronecker form (ℓ = 1):

(A⊗ I + I ⊗A+ (U1 ⊗ U1)(V1 ⊗ V1)
⊤)x = f

that is

(A+ UV⊤)x = f

with U = U1 ⊗ U1, V = V1 ⊗ V1 again of low rank s21

Solution method: Sherman-Morrison-Woodbury formula

x = (A+ UV⊤)−1f = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

aIn fact, terms in the form MiXNi can also be treated
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Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

1. Solve Aw = f

2. Solve Apj = uj where U = [u1, . . . , us2 ] to give P = [p1, . . . , ps2 ];

3. Compute H = I + V⊤P ∈ Rs2×s2

4. Solve Hg = V⊤w

5. Compute x = w − Pg.

Steps 1. and 2.:

w = A−1f ⇔ AW +WA⊤ = F, f = vec(F )

Analogously for each pj = vec(Pj) in step 2

AW +WA⊤ = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.

v⊤j A
−1ut = v⊤i Ptvk, j = (k − 1)s+ i

Analogously for V⊤w in step 4
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Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

1. Solve Aw = f

2. Solve Apj = uj where U = [u1, . . . , us2 ] to give P = [p1, . . . , ps2 ];

3. Compute H = I + V⊤P ∈ Rs2×s2

4. Solve Hg = V⊤w

5. Compute x = w − Pg.

Steps 1. and 2.:

w = A−1f ⇔ AW +WA⊤ = F, f = vec(F )

Analogously for each pj = vec(Pj) in step 2

AW +WA⊤ = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.

v⊤j A
−1ut = v⊤i Ptvk, j = (k − 1)s+ i

Analogously for V⊤w in step 4
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Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

1. Solve Aw = f

2. Solve Apj = uj where U = [u1, . . . , us2 ] to give P = [p1, . . . , ps2 ];

3. Compute H = I + V⊤P ∈ Rs2×s2

4. Solve Hg = V⊤w

5. Compute x = w − Pg.

Steps 1. and 2.:

w = A−1f ⇔ AW +WA⊤ = F, f = vec(F )

Analogously for each pj = vec(Pj) in step 2

AW +WA⊤ = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.

v⊤j A
−1ut = v⊤i Ptvk, j = (k − 1)s+ i

Analogously for V⊤w in step 4
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A numerical example

Let X⋆ be a ref. soln (uniformly distr.random), and rhs computed explicitly

We monitor: Err :=
‖X−X⋆‖F

‖X⋆‖F
Matrix form Vector Form

n s1/s2 CPU time Err CPU time Err

40 3/5 0.013 3.81e-11 0.195 2.29e-10

6/10 0.017 9.05e-10 0.657 4.98e-10

12/20 0.035 5.25e-09 2.333 1.35e-08

80 3/5 0.022 2.15e-10 5.283 1.22e-09

6/10 0.033 8.38e-09 15.408 1.84e-08

12/20 0.074 2.50e-08 56.347 3.46e-08

160 3/5 0.043 1.29e-09 129.957 6.89e-09

6/10 0.070 1.10e-08 281.946 2.69e-08

12/20 0.220 2.90e-07 1030.242 1.20e-06

Table 1: Symmetric and dense matrix A and U1, U2 (ℓ = 2) for various ranks s1, s2

Hao and Simoncini, 2021. See also Damm, 2008, Massei etal 2018.
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Conclusions
• Rich setting for new algorithmic strategies

• Certain approaches appropriate for solving linear tensor equations

• Devise more general “direct” solvers, to be used (also) in the projection phase!

Visit: www.dm.unibo.it/˜simoncin

Email address: valeria.simoncini@unibo.it
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