
Computational methods for large-scale matrix

equations and application to PDEs

V. Simoncini

Dipartimento di Matematica

Alma Mater Studiorum - Università di Bologna

valeria.simoncini@unibo.it

1

Linear (vector) systems and linear matrix equations

Problem: solve the linear problem

Ax = b or T1X+XT2 = B

A x = b

T1 X + X
T2

= B

Remark: In discretizing PDEs with tensor bases, the two problems may be

mathematically equivalent !

2

Linear (vector) systems and linear matrix equations

Problem: solve the linear problem

Ax = b or T1X+XT2 = B

A x = b

T1 X + X
T2

= B

Remark: In discretizing PDEs with tensor bases, the two problems may be

mathematically equivalent !

3

The Poisson equation

−uxx − uyy = f, in Ω = (0, 1)2

+ Dirichlet b.c. (zero b.c. for simplicity)

4

The Poisson equation

−uxx − uyy = f, in Ω = (0, 1)2 + Dirichlet zero b.c.

FD Discretization: Ui,j ≈ u(xi, yj), with (xi, yj) interior nodes, so that

uxx(xi, yj) ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
=

1

h2
[1,−2, 1]

Ui−1,j

Ui,j

Ui+1,j

uyy(xi, yj) ≈
Ui,j−1 − 2Ui,j + Ui,j+1

h2
=

1

h2
[Ui,j−1, Ui,j , Ui,j+1]

1

−2

1

−T1U−UT⊤
1 = F, Fij = f(xi, yj), T1 = 1

h2 tridiag(1,−2, 1)

Lexicographic ordering: U→ u = [U11, ...,Un,1,U1,2, . . . ,Un,2, . . .]⊤

Au = f A = −I ⊗ T1 − T1 ⊗ I, f = vec(F),

((M ⊗N) Kronecker product, (M ⊗N) = (Mi,jN))

5

The Poisson equation

−uxx − uyy = f, in Ω = (0, 1)2 + Dirichlet zero b.c.

FD Discretization: Ui,j ≈ u(xi, yj), with (xi, yj) interior nodes, so that

uxx(xi, yj) ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
=

1

h2
[1,−2, 1]

Ui−1,j

Ui,j

Ui+1,j

uyy(xi, yj) ≈
Ui,j−1 − 2Ui,j + Ui,j+1

h2
=

1

h2
[Ui,j−1, Ui,j , Ui,j+1]

1

−2

1

−T1U−UT⊤
1 = F, Fij = f(xi, yj), T1 = 1

h2 tridiag(1,−2, 1)

Lexicographic ordering:

U→ vec(U) = u = [U11, ...,Un,1,U1,2, . . . ,Un,2, . . .]⊤

Au = f with A = −I ⊗ T1 − T1 ⊗ I, f = vec(F)

((M ⊗N) Kronecker product, (M ⊗N) = (Mi,jN))

6

Computational considerations

T1U+UT2 = F, Ti ∈ Rni×ni

Au = f A = I ⊗ T1 + T2 ⊗ I ∈ Rn1n2×n1n2

0 2 4 6 8 10

nz = 28

0

1

2

3

4

5

6

7

8

9

10

11

0 20 40 60 80 100

nz = 460

0

10

20

30

40

50

60

70

80

90

100

T1 A

7

Discretization of more complex domains (with Y. Hao)

−uxx − uyy = f, in Ω

(x, y) ∈ Ω, x = r cos θ, y = r sin θ

(r, θ) ∈ [r0, r1]× [0,
π

4
]

polar grid

♣ Transformed equation in polar coordinates:

−r2ũrr − rũr − ũθθ = f̃ , (r, θ) ∈ [r0, r1]× [0,
π

4
]

Matrix equation after mapping to the rectangle:

Φ2T Ũ + ŨT − ΦBŨ = F̃ ⇔ (Φ2T − ΦB)Ũ + ŨT = F̃

8

Discretization of more complex domains (with Y. Hao)

−uxx − uyy = f, in Ω

(x, y) ∈ Ω, x = r cos θ, y = r sin θ

(r, θ) ∈ [r0, r1]× [0,
π

4
]

polar grid

♣ Transformed equation in log-polar coordinates (r = eρ):

−ûρρ − ûθθ = f̂ , (ρ, θ) ∈ [ρ0, ρ1]× [0,
π

4
]

Matrix equation after mapping to the rectangle:

T Û ++ÛT = F̂

9

Poisson equation in a polygon with more than 4 edges (with Y. Hao)

♣ Schwarz-Christoffel conformal mappings between polygon Ω and rectangle Π

−uxx − uyy = f, (x, y) ∈ Ω

−ũξξ − ũηη = J f̃ , (ξ, η) ∈ Π

(J Jacobian det of SC mapping)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

With finite difference discretization in Π:

T1U + UT2 = F , F = F̃+b.c., and F̃i,j = (J f̃)(ξi, ηj), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

Poisson equation is the ideal setting for SC mappings!

10

More general settings

• Convection-diffusion eqns in a rectangle

(see, e.g., Palitta & Simoncini, 2016)

• Space-Time discretizations via tensorized high order methods

(see, e.g., joint wrk w/ Henning, Palitta and Urban, 2020)

• Galerkin FE discretization of Stochastic PDEs

(see, e.g., joint wrk w/ Powell and Silvester, 2017)

• Isogeometric Analysis

(see, e.g., Sangalli and Tani, 2016)

• ...

... A classical approach, Bickley & McNamee, 1960, Wachspress, 1963

(Early literature on difference equations)

11

Numerical solution of the Sylvester equation

AU +UB = G

Various settings:

• Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:

A∗ = URU∗, B = V SV ∗ with R,S upper triangular;

2. Solve R∗
Y + Y S = U∗GV for Y (element-wise);

3. Compute U = UY V ∗

Large A and small B: Column decoupling

1. Compute the decomposition B = WSW−1, S = diag(s1, . . . , sm)

2. Set Ĝ = GW

3. For i = 1, . . . ,m solve (A+ siI)(Û)i = (Ĝ)i

4. Compute U = ÛW−1

Large A and large B: Iterative solution (G low rank)

12

Numerical solution of the Sylvester equation

AU +UB = G

Various settings:

• Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:

A∗ = URU∗, B = V SV ∗ with R,S upper triangular;

2. Solve R∗
Y + Y S = U∗GV for Y (element-wise);

3. Compute U = UY V ∗

• Large A and small B: Column decoupling

1. Compute the decomposition B = WSW−1, S = diag(s1, . . . , sm)

2. Set Ĝ = GW

3. For i = 1, . . . ,m solve (A+ siI)(Û)i = (Ĝ)i

4. Compute U = ÛW−1

Large A and large B: Iterative solution (G low rank)

13

Numerical solution of the Sylvester equation

AU +UB = G

Various settings:

• Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:

A∗ = URU∗, B = V SV ∗ with R,S upper triangular;

2. Solve R∗
Y + Y S = U∗GV for Y (element-wise);

3. Compute U = UY V ∗.

• Large A and small B: Column decoupling

1. Compute the decomposition B = WSW−1, S = diag(s1, . . . , sm)

2. Set Ĝ = GW

3. For i = 1, . . . ,m solve (A+ siI)(Û)i = (Ĝ)i

4. Compute U = ÛW−1

• Large A and large B: Iterative solution (G low rank, or G sparse)

14

Numerical solution of large scale Sylvester equations

AU +UB = G

with G low rank

• Projection methods

• ADI (Alternating Direction Iteration)

• Data sparse approaches (structure-dependent)

Projection methods

Seek Uk ≈ U of low rank:

Uk =

U

(1)
k

 [(U

(2)
k

)⊤]

with U
(1)
k

,U
(2)
k

tall

Index k “related” to the approximation rank

See, Simoncini, SIREV 2016.

15

Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although

the transformation to a matrix-vector equation [...] allows us to use

the considerable arsenal of numerical weapons currently available for

the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

16

Multiterm linear matrix equation. Classical device

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Kronecker formulation
(
B⊤

1 ⊗A1 + . . .+B⊤
ℓ ⊗Aℓ

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : M ⊗ P =

m11P . . . m1nP

.

.

.

.
.
.

.

.

.

mn1P . . . mnnP

and vec(AXB) = (B
⊤

⊗ A)vec(X)

Alternative approaches to the Kronecker form:

• Fixed point iterations (an “evergreen”...)

• Projection-type methods ⇒ low rank approximation

• Ad-hoc problem-dependent procedures

• etc.

Current very active area of research

17

Multiterm linear matrix equation. Classical device

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Kronecker formulation
(
B⊤

1 ⊗A1 + . . .+B⊤
ℓ ⊗Aℓ

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : M ⊗ P =

m11P . . . m1nP

.

.

.

.
.
.

.

.

.

mn1P . . . mnnP

and vec(AXB) = (B
⊤

⊗ A)vec(X)

Alternatives to Kronecker form:

• Fixed point iterations (an “evergreen”...)

• Projection-type methods ⇒ low rank approximation

• Ad-hoc problem-dependent procedures

• etc.

Current very active area of research

18

Truncated matrix-oriented CG for Kronecker form

Input: A(X) = A1XB1 +A2XB2 + . . .+AℓXBℓ, right-hand side C ∈ Rn×n in

low-rank format. Truncation operator T .

Output: Matrix X ∈ Rn×n in low-rank format s.t. ||A(X)− C||F /||C||F ≤ tol.

1: X0 = 0, R0 = C, P0 = R0, Q0 = A(P0)

2: ξ0 = 〈P0, Q0〉, k = 0 〈X,Y 〉 = tr(X⊤Y)

3: while ||Rk||F > tol do

4: ωk = 〈Rk, Pk〉/ξk
5: Xk+1 = Xk + ωkPk, Xk+1 ← T (Xk+1)

6: Rk+1 = C −A(Xk+1), Optionally: Rk+1 ← T (Rk+1)

7: βk = −〈Rk+1, Qk〉/ξk
8: Pk+1 = Rk+1 + βkPk, Pk+1 ← T (Pk+1)

9: Qk+1 = A(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10: ξk+1 = 〈Pk+1, Qk+1〉

11: k = k + 1

12: end while

13: X = Xk

♣ Iterates kept in factored form! Kressner and Tobler, 2011

19

Threshold based truncated CG. n = 100, tol=ǫ ∈ {10−4, 10−6, 10−8}

A = 1
h2 tridiag(−1, 2,−1), M = diag(a1), N = diag(a2), a1 and a2 random vectors

0 20 40 60 80 100 120

IT

10
-8

10
-6

10
-4

10
-2

10
0

10
2

=1e-4

=1e-6

=1e-8

0 20 40 60 80 100 120

IT

0

10

20

30

40

50

60

70

ra
n
k
 o

f
m

a
tr

ix

X
k

R
k

P
k

0 20 40 60 80 100 120

IT

0

10

20

30

40

50

60

70

80

90

100

ra
n
k
 o

f
m

a
tr

ix

X
k

R
k

P
k

0 20 40 60 80 100 120

IT

0

10

20

30

40

50

60

70

80

90

100

ra
n
k
 o

f
m

a
tr

ix

X
k

R
k

P
k

20

Projection-type methods. 1

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Given approximation spaces KA, KB ,

X ≈ Xm with vec(Xm) ∈ KB ⊗KA

X is approximated by a low rank matrix !

that is, Xm := VmYmW⊤
m , KA = Range(Vm), KB = Range(Wm)

Galerkin condition:

R := A1XmB1 +A2XmB2 + . . .+AℓXmBℓ − C ⊥ KB ⊗KA

V ⊤
mRWm = 0

Projected matrix equation:

V ⊤
m (A1XmB1 + . . .+AℓXmBℓ − C)Wm = 0

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

21

Projection-type methods. 1

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Given approximation spaces KA, KB ,

X ≈ Xm with vec(Xm) ∈ KB ⊗KA

X is approximated by a low rank matrix !

that is, Xm := VmYmW⊤
m , KA = Range(Vm), KB = Range(Wm)

Galerkin condition:

R := A1XmB1 +A2XmB2 + . . .+AℓXmBℓ − C ⊥ KB ⊗KA

V ⊤
mRWm = 0

Projected matrix equation:

V ⊤
m (A1XmB1 + . . .+AℓXmBℓ − C)Wm = 0

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

22

Projection-type methods. 1

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Given approximation spaces KA, KB ,

X ≈ Xm with vec(Xm) ∈ KB ⊗KA

X is approximated by a low rank matrix !

that is, Xm := VmYmW⊤
m , KA = Range(Vm), KB = Range(Wm)

Galerkin condition:

R := A1XmB1 +A2XmB2 + . . .+AℓXmBℓ − C ⊥ KB ⊗KA

V ⊤
mRWm = 0

Projected matrix equation:

V ⊤
m (A1XmB1 + . . .+AℓXmBℓ − C)Wm = 0

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

23

Projection-type methods. 2

Solve for Y :

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

Then, implicitly generate Xm := VmYmW⊤
m

Procedure generalizes the case ℓ = 2, using the classical Galerkin projection methodology

Optimality property: Palitta and Simoncini, 2020

‖X⋆ −Xm‖A = min
Z=VmY W⊤

m

Y ∈Rm×m

‖X⋆ − Z‖A,

where ‖X‖2A = trace
(∑ℓ

j=1 X
⊤AjXBj

)
.

Crucial issues for effectiveness:

• Choice of spaces KA,KB and their construction. Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

• Solution of the reduced multiterm equation

24

Projection-type methods. 2

Solve for Y :

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

Then, implicitly generate Xm := VmYmW⊤
m

Procedure generalizes the case ℓ = 2, using the classical Galerkin projection methodology

Optimality property: Palitta and Simoncini, 2020

‖X⋆ −Xm‖A = min
Z=VmY W⊤

m

Y ∈Rm×m

‖X⋆ − Z‖A,

where ‖X‖2A = trace
(∑ℓ

j=1 X
⊤AjXBj

)
.

Crucial issues for effectiveness:

• Choice of spaces KA,KB and their construction. Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

• Solution of the reduced multiterm equation

25

Projection-type methods. 2

Solve for Y :

(V ⊤
mA1Vm)Y (W⊤

mB1Wm) + . . .+ (V ⊤
mAℓVm)Y (W⊤

mBℓWm)− V ⊤
mCWm = 0

Then, implicitly generate Xm := VmYmW⊤
m

Procedure generalizes the case ℓ = 2, using the classical Galerkin projection methodology

Optimality property: Palitta and Simoncini, 2020

‖X⋆ −Xm‖A = min
Z=VmY W⊤

m

Y ∈Rm×m

‖X⋆ − Z‖A,

where ‖X‖2A = trace
(∑ℓ

j=1 X
⊤AjXBj

)
.

Crucial issues for effectiveness:

• Choice of spaces KA,KB and their construction. Ideally,

range(Vm) ⊆ range(Vm+1), range(Wm) ⊆ range(Wm+1)

• Solution of the reduced multiterm equation

26

A “simple” example

AX +XA+MXM = ff⊤, A,M spd, f vector

♣ No available direct methods for the generic case, except Kronecker form

Matrix-oriented CG: X(k) = X
(k)
1 G(k)(X

(k)
1)⊤

range(X
(k)
1) ⊂ Qk = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Qk+1) ≤ dim(Qk) + 2k

Galerkin method: Choose Km = range(Vm) with

V0 = f =: v1 V1 = [v1, Av1,Mv1] =: [v1, v2, v3]

V2 = [V1, Av2,Mv2] =: [v1, v2, v3, v4, v5]

V3 = [V2, Av3,Mv3] =: [v1, v2, v3, v4, v5, v6, v7]

etc.

⇒ Km = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Km) = 2m+ 1

Qk = range(V2k−1)

Hao and Simoncini, work in progress

27

A “simple” example

AX +XA+MXM = ff⊤, A,M spd, f vector

♣ No available direct methods for the generic case, except Kronecker form

Matrix-oriented CG: X(k) = X
(k)
1 G(k)(X

(k)
1)⊤

range(X
(k)
1) ⊂ Qk = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Qk+1) ≤ dim(Qk) + 2k

Galerkin method: Choose Km = range(Vm) with

V0 = f =: v1 V1 = [v1, Av1,Mv1] =: [v1, v2, v3]

V2 = [V1, Av2,Mv2] =: [v1, v2, v3, v4, v5]

V3 = [V2, Av3,Mv3] =: [v1, v2, v3, v4, v5, v6, v7]

etc.

⇒ Km = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Km) = 2m+ 1

Qk = range(V2k−1)

Hao and Simoncini, work in progress

28

A “simple” example

AX +XA+MXM = ff⊤, A,M spd, f vector

♣ No available direct methods for the generic case, except Kronecker form

Matrix-oriented CG: X(k) = X
(k)
1 G(k)(X

(k)
1)⊤

range(X
(k)
1) ⊂ Qk = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Qk+1) ≤ dim(Qk) + 2k

Galerkin method: Choose Km = range(Vm) with

V0 = f =: v1 V1 = [v1, Av1,Mv1] =: [v1, v2, v3]

V2 = [V1, Av2,Mv2] =: [v1, v2, v3, v4, v5]

V3 = [V2, Av3,Mv3] =: [v1, v2, v3, v4, v5, v6, v7]

etc.

⇒ Km = span{f,Af,Mf,A2f,AMf,MAf,M2f, ...}, dim(Km) = 2m+ 1

Qk = range(V2k−1)

Hao and Simoncini, work in progress

29

Computational methods for certain structured problems

A particular casea:

AX +XA⊤ +M1XM1 + . . .+MℓXMℓ = F,

with A ∈ Rn×n, Mis with very low rank si, Mi = UiV
⊤
i

Using the Kronecker form (ℓ = 1):

(A⊗ I + I ⊗A+ (U1 ⊗ U1)(V1 ⊗ V1)
⊤)x = f

that is

(A+ UV⊤)x = f

with U = U1 ⊗ U1, V = V1 ⊗ V1 again of low rank s21

Solution method: Sherman-Morrison-Woodbury formula

x = (A+ UV⊤)−1f = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

aIn fact, terms in the form MiXNi can also be treated

30

Computational methods for certain structured problems

A particular casea:

AX +XA⊤ +M1XM1 + . . .+MℓXMℓ = F,

with A ∈ Rn×n, Mis with very low rank si, Mi = UiV
⊤
i

Using the Kronecker form (ℓ = 1):

(A⊗ I + I ⊗A+ (U1 ⊗ U1)(V1 ⊗ V1)
⊤)x = f

that is

(A+ UV⊤)x = f

with U = U1 ⊗ U1, V = V1 ⊗ V1 again of low rank s21

Solution method: Sherman-Morrison-Woodbury formula

x = (A+ UV⊤)−1f = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

aIn fact, terms in the form MiXNi can also be treated

31

Computational methods for certain structured problems

A particular casea:

AX +XA⊤ +M1XM1 + . . .+MℓXMℓ = F,

with A ∈ Rn×n, Mis with very low rank si, Mi = UiV
⊤
i

Using the Kronecker form (ℓ = 1):

(A⊗ I + I ⊗A+ (U1 ⊗ U1)(V1 ⊗ V1)
⊤)x = f

that is

(A+ UV⊤)x = f

with U = U1 ⊗ U1, V = V1 ⊗ V1 again of low rank s21

Solution method: Sherman-Morrison-Woodbury formula

x = (A+ UV⊤)−1f = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

aIn fact, terms in the form MiXNi can also be treated

32

Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

1. Solve Aw = f

2. Solve Apj = uj where U = [u1, . . . , us2] to give P = [p1, . . . , ps2];

3. Compute H = I + V⊤P ∈ Rs2×s2

4. Solve Hg = V⊤w

5. Compute x = w − Pg.

Steps 1. and 2.:

w = A−1f ⇔ AW +WA⊤ = F, f = vec(F)

Analogously for each pj = vec(Pj) in step 2

AW +WA⊤ = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.

v⊤j A
−1ut = v⊤i Ptvk, j = (k − 1)s+ i

Analogously for V⊤w in step 4

33

Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

1. Solve Aw = f

2. Solve Apj = uj where U = [u1, . . . , us2] to give P = [p1, . . . , ps2];

3. Compute H = I + V⊤P ∈ Rs2×s2

4. Solve Hg = V⊤w

5. Compute x = w − Pg.

Steps 1. and 2.:

w = A−1f ⇔ AW +WA⊤ = F, f = vec(F)

Analogously for each pj = vec(Pj) in step 2

AW +WA⊤ = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.

v⊤j A
−1ut = v⊤i Ptvk, j = (k − 1)s+ i

Analogously for V⊤w in step 4

34

Matrix-oriented Sherman-Morrison-Woodbury formula

x = A−1f −A−1U(I + V⊤A−1U)−1V⊤A−1f

1. Solve Aw = f

2. Solve Apj = uj where U = [u1, . . . , us2] to give P = [p1, . . . , ps2];

3. Compute H = I + V⊤P ∈ Rs2×s2

4. Solve Hg = V⊤w

5. Compute x = w − Pg.

Steps 1. and 2.:

w = A−1f ⇔ AW +WA⊤ = F, f = vec(F)

Analogously for each pj = vec(Pj) in step 2

AW +WA⊤ = Pj Lyapunov equations, with the same A - cheap “direct” solution

Step 3.

v⊤j A
−1ut = v⊤i Ptvk, j = (k − 1)s+ i

Analogously for V⊤w in step 4

35

A numerical example

Let X⋆ be a ref. soln (uniformly distr.random), and rhs computed explicitly

We monitor: Err :=
‖X−X⋆‖F

‖X⋆‖F
Matrix form Vector Form

n s1/s2 CPU time Err CPU time Err

40 3/5 0.013 3.81e-11 0.195 2.29e-10

6/10 0.017 9.05e-10 0.657 4.98e-10

12/20 0.035 5.25e-09 2.333 1.35e-08

80 3/5 0.022 2.15e-10 5.283 1.22e-09

6/10 0.033 8.38e-09 15.408 1.84e-08

12/20 0.074 2.50e-08 56.347 3.46e-08

160 3/5 0.043 1.29e-09 129.957 6.89e-09

6/10 0.070 1.10e-08 281.946 2.69e-08

12/20 0.220 2.90e-07 1030.242 1.20e-06

Table 1: Symmetric and dense matrix A and U1, U2 (ℓ = 2) for various ranks s1, s2

Hao and Simoncini, 2021. See also Damm, 2008, Massei etal 2018.

36

Conclusions
• Rich setting for new algorithmic strategies

• Certain approaches appropriate for solving linear tensor equations

• Devise more general “direct” solvers, to be used (also) in the projection phase!

Visit: www.dm.unibo.it/˜simoncin

Email address: valeria.simoncini@unibo.it

references

1. Yue Hao and V. S., Matrix equation solving of PDEs in polygonal domains using

conformal mappings. Journal of Numerical Mathematics, vol. 29, no. 3, 2021

2. Yue Hao and V. S., The Sherman-Morrison-Woodbury formula for generalized

linear matrix equations and applications, Numer. Linear Algebra w/Appl. 28 (5), 2021

3. Catherine E. Powell, David Silvester and V. S., An efficient reduced basis solver for

stochastic Galerkin matrix equations, SIAM J. Scientific Computing, 39 (1), (2017).

4. Davide Palitta and V. S., Matrix-equation-based strategies for convection-diffusion

equations, BIT Numerical Mathematics, 56-2, (2016).

5. V.S., Computational methods for linear matrix equations,SIAM Review, 58-3(2016)

37

