Computational methods for large-scale matrix equations and application to PDEs

V. Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Linear (vector) systems and linear matrix equations

Problem: solve the linear problem

$$
\mathcal{A} \mathbf{x}=b \quad \text { or } \quad T_{1} \mathbf{X}+\mathbf{X} T_{2}=B
$$

Linear (vector) systems and linear matrix equations
Problem: solve the linear problem

$$
\mathcal{A} \mathbf{x}=b \quad \text { or } \quad T_{1} \mathbf{X}+\mathbf{X} T_{2}=B
$$

Remark: In discretizing PDEs with tensor bases, the two problems may be mathematically equivalent!

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2}
$$

+ Dirichlet b.c. (zero b.c. for simplicity)

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-1}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
-T_{1} \mathbf{U}-\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
\end{gathered}
$$

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-1}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \\
-T_{1} \mathbf{U}-\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
\end{gathered}
$$

Lexicographic ordering:
$\mathbf{U} \rightarrow \operatorname{vec}(\mathbf{U})=\mathbf{u}=\left[\mathbf{U}_{11}, \ldots, \mathbf{U}_{n, 1}, \mathbf{U}_{1,2}, \ldots, \mathbf{U}_{n, 2}, \ldots\right]^{\top}$

$$
\mathcal{A} \mathbf{u}=f \quad \text { with } \quad \mathcal{A}=-I \otimes T_{1}-T_{1} \otimes I, \quad f=\operatorname{vec}(F)
$$

$\left((M \otimes N)\right.$ Kronecker product, $\left.(M \otimes N)=\left(M_{i, j} N\right)\right)$

Computational considerations

$$
T_{1} \mathbf{U}+\mathbf{U} T_{2}=F, \quad T_{i} \in \mathbb{R}^{n_{i} \times n_{i}}
$$

$$
\mathcal{A} \mathbf{u}=f \quad \mathcal{A}=I \otimes T_{1}+T_{2} \otimes I \in \mathbb{R}^{n_{1} n_{2} \times n_{1} n_{2}}
$$

T_{1}
\mathcal{A}

Discretization of more complex domains (with Y. Hao)

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega
$$

$$
(x, y) \in \Omega, \quad x=r \cos \theta, y=r \sin \theta
$$

$$
(r, \theta) \in\left[r_{0}, r_{1}\right] \times\left[0, \frac{\pi}{4}\right]
$$

\& Transformed equation in polar coordinates:

$$
-r^{2} \tilde{u}_{r r}-r \tilde{u}_{r}-\tilde{u}_{\theta \theta}=\tilde{f}, \quad(r, \theta) \in\left[r_{0}, r_{1}\right] \times\left[0, \frac{\pi}{4}\right]
$$

Matrix equation after mapping to the rectangle:

$$
\Phi^{2} T \widetilde{\boldsymbol{U}}+\widetilde{\boldsymbol{U}} T-\Phi B \widetilde{\boldsymbol{U}}=\widetilde{F} \quad \Leftrightarrow \quad\left(\Phi^{2} T-\Phi B\right) \widetilde{\boldsymbol{U}}+\widetilde{\boldsymbol{U}} T=\widetilde{F}
$$

Discretization of more complex domains (with Y. Hao)

$$
\begin{gathered}
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega \\
(x, y) \in \Omega, \quad x=r \cos \theta, \quad y=r \sin \theta \\
(r, \theta) \in\left[r_{0}, r_{1}\right] \times\left[0, \frac{\pi}{4}\right]
\end{gathered}
$$

\& Transformed equation in log-polar coordinates $\left(r=e^{\rho}\right)$:

$$
-\hat{u}_{\rho \rho}-\hat{u}_{\theta \theta}=\hat{f}, \quad(\rho, \theta) \in\left[\rho_{0}, \rho_{1}\right] \times\left[0, \frac{\pi}{4}\right]
$$

Matrix equation after mapping to the rectangle:

$$
T \widehat{\boldsymbol{U}}++\widehat{\boldsymbol{U}} T=\widehat{F}
$$

Poisson equation in a polygon with more than 4 edges (with Y. Hao)
$\%$ Schwarz-Christoffel conformal mappings between polygon Ω and rectangle Π

$$
-u_{x x}-u_{y y}=f, \quad(x, y) \in \Omega
$$

$-\widetilde{u}_{\xi \xi}-\widetilde{u}_{\eta \eta}=\mathscr{J} \widetilde{f}, \quad(\xi, \eta) \in \Pi$
(\mathscr{J} Jacobian det of SC mapping)

With finite difference discretization in Π :

$$
T_{1} U+U T_{2}=F, \quad F=\widetilde{F}+b . c ., \quad \text { and } \quad \widetilde{F}_{i, j}=(\mathscr{J} \widetilde{f})\left(\xi_{i}, \eta_{j}\right), 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}
$$

Poisson equation is the ideal setting for SC mappings!

More general settings

- Convection-diffusion eqns in a rectangle (see, e.g., Palitta \& Simoncini, 2016)
- Space-Time discretizations via tensorized high order methods (see, e.g., joint wrk w/ Henning, Palitta and Urban, 2020)
- Galerkin FE discretization of Stochastic PDEs (see, e.g., joint wrk w/ Powell and Silvester, 2017)
- Isogeometric Analysis (see, e.g., Sangalli and Tani, 2016)
... A classical approach, Bickley \& McNamee, 1960, Wachspress, 1963 (Early literature on difference equations)

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

Various settings:

- Small A and small B : Bartels-Stewart algorithm

1. Compute the Schur forms:
$A^{*}=U R U^{*}, B=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \boldsymbol{Y}+\boldsymbol{Y} S=U^{*} G V$ for \boldsymbol{Y} (element-wise);
3. Compute $\boldsymbol{U}=U \boldsymbol{Y} V^{*}$

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$A^{*}=U R U^{*}, B=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \boldsymbol{Y}+\boldsymbol{Y} S=U^{*} G V$ for \boldsymbol{Y} (element-wise);
3. Compute $\boldsymbol{U}=U \boldsymbol{Y} V^{*}$

- Large A and small B : Column decoupling

1. Compute the decomposition $B=W S W^{-1}, S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$
2. Set $\widehat{G}=G W$
3. For $i=1, \ldots, m$ solve $\left(A+s_{i} I\right)(\widehat{\boldsymbol{U}})_{i}=(\widehat{G})_{i}$
4. Compute $\boldsymbol{U}=\widehat{\boldsymbol{U}} W^{-1}$

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

Various settings:

- Small A and small B: Bartels-Stewart algorithm

1. Compute the Schur forms:
$A^{*}=U R U^{*}, B=V S V^{*}$ with R, S upper triangular;
2. Solve $R^{*} \boldsymbol{Y}+\boldsymbol{Y} S=U^{*} G V$ for \boldsymbol{Y} (element-wise);
3. Compute $\boldsymbol{U}=U \boldsymbol{Y} V^{*}$.

- Large A and small B : Column decoupling

1. Compute the decomposition $B=W S W^{-1}, S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$
2. Set $\widehat{G}=G W$
3. For $i=1, \ldots, m$ solve $\left(A+s_{i} I\right)(\widehat{\boldsymbol{U}})_{i}=(\widehat{G})_{i}$
4. Compute $\boldsymbol{U}=\widehat{\boldsymbol{U}} W^{-1}$

- Large A and large B : Iterative solution (G low rank, or G sparse)

Numerical solution of large scale Sylvester equations

$$
A \boldsymbol{U}+\boldsymbol{U} B=G
$$

with G low rank

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

> Projection methods

Seek $\boldsymbol{U}_{k} \approx \boldsymbol{U}$ of low rank:

$$
\boldsymbol{U}_{k}=\left[\boldsymbol{U}_{k}^{(1)}\right]\left[\left(\boldsymbol{U}_{k}^{(2)}\right)^{\top}\right]
$$

with $\boldsymbol{U}_{k}^{(1)}, \boldsymbol{U}_{k}^{(2)}$ tall
Index k "related" to the approximation rank
See, Simoncini, SIREV 2016.

$$
\begin{aligned}
& \text { Multiterm linear matrix equation } \\
& A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
\end{aligned}
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

Multiterm linear matrix equation. Classical device

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Kronecker formulation $\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \Leftrightarrow \boldsymbol{A} \boldsymbol{x}=c$
Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

$$
\text { Kronecker product }: M \otimes P=\left[\begin{array}{ccc}
m_{11} P & \cdots & m_{1 n} P \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
m_{n 1} P & \cdots & m_{n n} P
\end{array}\right] \text { and } \operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)
$$

Multiterm linear matrix equation. Classical device

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Kronecker formulation $\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \Leftrightarrow \mathcal{A} \boldsymbol{x}=c$
Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product $: M \otimes P=\left[\begin{array}{ccc}m_{11} P & \cdots & m_{1 n} P \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ m_{n 1} P & \cdots & m_{n n} P\end{array}\right]$ and $\operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)$

Alternatives to Kronecker form:

- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

Current very active area of research

Truncated matrix-oriented CG for Kronecker form
Input: $\mathcal{A}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}$, right-hand side $C \in \mathbb{R}^{n \times n}$ in
low-rank format. Truncation operator \mathcal{T}.
Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $\|\mathcal{A}(X)-C\|_{F} /\|C\|_{F} \leq t o l$.
1: $X_{0}=0, R_{0}=C, P_{0}=R_{0}, Q_{0}=\mathcal{A}\left(P_{0}\right)$
2: $\xi_{0}=\left\langle P_{0}, Q_{0}\right\rangle, k=0$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

3: while $\left\|R_{k}\right\|_{F}>$ tol do

4: $\quad \omega_{k}=\left\langle R_{k}, P_{k}\right\rangle / \xi_{k}$
5: $\quad X_{k+1}=X_{k}+\omega_{k} P_{k}$,
6: $\quad R_{k+1}=C-\mathcal{A}\left(X_{k+1}\right)$,
7: $\quad \beta_{k}=-\left\langle R_{k+1}, Q_{k}\right\rangle / \xi_{k}$
8: $\quad P_{k+1}=R_{k+1}+\beta_{k} P_{k}$,
9: $\quad Q_{k+1}=\mathcal{A}\left(P_{k+1}\right)$,
10: $\quad \xi_{k+1}=\left\langle P_{k+1}, Q_{k+1}\right\rangle$
11: $\quad k=k+1$
12: end while
13: $X=X_{k}$
\& Iterates kept in factored form!
Kressner and Tobler, 2011

Threshold based truncated CG. $n=100$, tol $=\epsilon \in\left\{10^{-4}, 10^{-6}, 10^{-8}\right\}$ $A=\frac{1}{h^{2}} \operatorname{tridiag}(-1, \underline{2},-1), M=\operatorname{diag}\left(a_{1}\right), N=\operatorname{diag}\left(a_{2}\right), a_{1}$ and a_{2} random vectors

Projection-type methods. 1

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Given approximation spaces $\mathcal{K}_{A}, \mathcal{K}_{B}$,

$$
\boldsymbol{X} \approx X_{m} \quad \text { with } \quad \operatorname{vec}\left(X_{m}\right) \in \mathcal{K}_{B} \otimes \mathcal{K}_{A}
$$

Projection-type methods. 1

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Given approximation spaces $\mathcal{K}_{A}, \mathcal{K}_{B}$,

$$
\boldsymbol{X} \approx X_{m} \quad \text { with } \quad \operatorname{vec}\left(X_{m}\right) \in \mathcal{K}_{B} \otimes \mathcal{K}_{A}
$$

\boldsymbol{X} is approximated by a low rank matrix !
that is, $X_{m}:=V_{m} Y_{m} W_{m}^{\top}, \quad \mathcal{K}_{A}=\operatorname{Range}\left(V_{m}\right), \mathcal{K}_{B}=\operatorname{Range}\left(W_{m}\right)$
Galerkin condition:

$$
\begin{gathered}
R:=A_{1} X_{m} B_{1}+A_{2} X_{m} B_{2}+\ldots+A_{\ell} X_{m} B_{\ell}-C \quad \perp \quad \mathcal{K}_{B} \otimes \mathcal{K}_{A} \\
V_{m}^{\top} R W_{m}=0
\end{gathered}
$$

Projection-type methods. 1

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Given approximation spaces $\mathcal{K}_{A}, \mathcal{K}_{B}$,

$$
\boldsymbol{X} \approx X_{m} \quad \text { with } \quad \operatorname{vec}\left(X_{m}\right) \in \mathcal{K}_{B} \otimes \mathcal{K}_{A}
$$

\boldsymbol{X} is approximated by a low rank matrix !

that is, $X_{m}:=V_{m} Y_{m} W_{m}^{\top}, \quad \mathcal{K}_{A}=\operatorname{Range}\left(V_{m}\right), \mathcal{K}_{B}=\operatorname{Range}\left(W_{m}\right)$
Galerkin condition:

$$
\begin{gathered}
R:=A_{1} X_{m} B_{1}+A_{2} X_{m} B_{2}+\ldots+A_{\ell} X_{m} B_{\ell}-C \quad \perp \quad \mathcal{K}_{B} \otimes \mathcal{K}_{A} \\
V_{m}^{\top} R W_{m}=0
\end{gathered}
$$

Projected matrix equation:

$$
\begin{gathered}
V_{m}^{\top}\left(A_{1} X_{m} B_{1}+\ldots+A_{\ell} X_{m} B_{\ell}-C\right) W_{m}=0 \\
\left(V_{m}^{\top} A_{1} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{1} W_{m}\right)+\ldots+\left(V_{m}^{\top} A_{\ell} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{\ell} W_{m}\right)-V_{m}^{\top} C W_{m}=0
\end{gathered}
$$

Projection-type methods. 2
Solve for \boldsymbol{Y} :
$\left(V_{m}^{\top} A_{1} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{1} W_{m}\right)+\ldots+\left(V_{m}^{\top} A_{\ell} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{\ell} W_{m}\right)-V_{m}^{\top} C W_{m}=0$
Then, implicitly generate $\quad X_{m}:=V_{m} \boldsymbol{Y}_{m} W_{m}^{\top}$

Procedure generalizes the case $\ell=2$, using the classical Galerkin projection methodology

Projection-type methods. 2
Solve for \boldsymbol{Y} :
$\left(V_{m}^{\top} A_{1} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{1} W_{m}\right)+\ldots+\left(V_{m}^{\top} A_{\ell} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{\ell} W_{m}\right)-V_{m}^{\top} C W_{m}=0$
Then, implicitly generate $\quad X_{m}:=V_{m} \boldsymbol{Y}_{m} W_{m}^{\top}$

Procedure generalizes the case $\ell=2$, using the classical Galerkin projection methodology
Optimality property: Palitta and Simoncini, 2020

$$
\left\|X_{\star}-X_{m}\right\|_{\mathcal{A}}=\min _{\substack{Z=V_{m} Y W_{m}^{\top} \\ Y \in \mathbb{R}^{m \times m}}}\left\|X_{\star}-Z\right\|_{\mathcal{A}}
$$

where $\|X\|_{\mathcal{A}}^{2}=\operatorname{trace}\left(\sum_{j=1}^{\ell} X^{\top} A_{j} X B_{j}\right)$.

Projection-type methods. 2
Solve for \boldsymbol{Y} :
$\left(V_{m}^{\top} A_{1} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{1} W_{m}\right)+\ldots+\left(V_{m}^{\top} A_{\ell} V_{m}\right) \boldsymbol{Y}\left(W_{m}^{\top} B_{\ell} W_{m}\right)-V_{m}^{\top} C W_{m}=0$
Then, implicitly generate $\quad X_{m}:=V_{m} \boldsymbol{Y}_{m} W_{m}^{\top}$

Procedure generalizes the case $\ell=2$, using the classical Galerkin projection methodology
Optimality property: Palitta and Simoncini, 2020

$$
\left\|X_{\star}-X_{m}\right\|_{\mathcal{A}}=\min _{\substack{\mathcal{Z}=V_{m} Y W_{m}^{\top} \\ Y \in \mathbb{R}^{m} \times m}}\left\|X_{\star}-Z\right\|_{\mathcal{A}}
$$

where $\|X\|_{\mathcal{A}}^{2}=\operatorname{trace}\left(\sum_{j=1}^{\ell} X^{\top} A_{j} X B_{j}\right)$.
Crucial issues for effectiveness:

- Choice of spaces $\mathcal{K}_{A}, \mathcal{K}_{B}$ and their construction. Ideally,

$$
\operatorname{range}\left(V_{m}\right) \subseteq \operatorname{range}\left(V_{m+1}\right), \quad \operatorname{range}\left(W_{m}\right) \subseteq \operatorname{range}\left(W_{m+1}\right)
$$

- Solution of the reduced multiterm equation

$$
\begin{gathered}
\text { A "simple" example } \\
A \boldsymbol{X}+\boldsymbol{X} A+M \boldsymbol{X} M=f f^{\top}, \quad A, M \mathrm{spd}, f \text { vector }
\end{gathered}
$$

\& No available direct methods for the generic case, except Kronecker form

$$
\begin{gathered}
\text { A "simple" example } \\
A \boldsymbol{X}+\boldsymbol{X} A+M \boldsymbol{X} M=f f^{\top}, \quad A, M \mathrm{spd}, f \text { vector }
\end{gathered}
$$

\& No available direct methods for the generic case, except Kronecker form
Matrix-oriented CG: $\quad X^{(k)}=X_{1}^{(k)} G^{(k)}\left(X_{1}^{(k)}\right)^{\top}$
$\operatorname{range}\left(X_{1}^{(k)}\right) \subset \mathbb{Q}_{k}=\operatorname{span}\left\{f, A f, M f, A^{2} f, A M f, M A f, M^{2} f, \ldots\right\}, \operatorname{dim}\left(\mathbb{Q}_{k+1}\right) \leq \operatorname{dim}\left(\mathbb{Q}_{k}\right)+2^{k}$

$$
\begin{gathered}
\text { A "simple" example } \\
A \boldsymbol{X}+\boldsymbol{X} A+M \boldsymbol{X} M=f f^{\top}, \quad A, M \mathrm{spd}, f \text { vector }
\end{gathered}
$$

\& No available direct methods for the generic case, except Kronecker form
Matrix-oriented CG: $\quad X^{(k)}=X_{1}^{(k)} G^{(k)}\left(X_{1}^{(k)}\right)^{\top}$
$\operatorname{range}\left(X_{1}^{(k)}\right) \subset \mathbb{Q}_{k}=\operatorname{span}\left\{f, A f, M f, A^{2} f, A M f, M A f, M^{2} f, \ldots\right\}, \operatorname{dim}\left(\mathbb{Q}_{k+1}\right) \leq \operatorname{dim}\left(\mathbb{Q}_{k}\right)+2^{k}$
Galerkin method: Choose $\mathcal{K}_{m}=\operatorname{range}\left(V_{m}\right)$ with

$$
\begin{aligned}
& V_{0}=f=: \underline{v_{1}} \quad \begin{array}{l}
V_{1} \\
\\
\\
V_{2}
\end{array}=\left[v_{1}, A v_{1}, M v_{1}\right]=:\left[v_{1}, \underline{v_{2}}, v_{3}\right] \\
& V_{3}=\left[V_{2}, A v_{3}, M v_{3}\right]=:\left[v_{1}, v_{2}, \underline{v_{3}}, v_{4}, v_{5}\right] \\
& \text { etc. } \\
&\left.\Rightarrow \mathcal{K}_{m}, v_{2}, v_{3}, \underline{v_{4}}, v_{5}, v_{6}, v_{7}\right] \\
& \operatorname{span}\left\{f, A f, M f, A^{2} f, A M f, M A f, M^{2} f, \ldots\right\}, \operatorname{dim}\left(\mathcal{K}_{m}\right)=2 m+1 \\
& \mathbb{Q}_{k}=\operatorname{range}\left(V_{2^{k-1}}\right)
\end{aligned}
$$

Hao and Simoncini, work in progress

Computational methods for certain structured problems
A particular case ${ }^{\text {a }}$:

$$
A \boldsymbol{X}+\boldsymbol{X} A^{\top}+M_{1} \boldsymbol{X} M_{1}+\ldots+M_{\ell} \boldsymbol{X} M_{\ell}=F,
$$

with $A \in \mathbb{R}^{n \times n}, M_{i} \mathrm{~S}$ with very low rank $s_{i}, M_{i}=U_{i} V_{i}^{\top}$

[^0]Computational methods for certain structured problems
A particular case ${ }^{\text {a }}$:

$$
A \boldsymbol{X}+\boldsymbol{X} A^{\top}+M_{1} \boldsymbol{X} M_{1}+\ldots+M_{\ell} \boldsymbol{X} M_{\ell}=F,
$$

with $A \in \mathbb{R}^{n \times n}, M_{i} \mathrm{~s}$ with very low rank $s_{i}, M_{i}=U_{i} V_{i}^{\top}$

Using the Kronecker form $(\ell=1)$:

$$
\left(A \otimes I+I \otimes A+\left(U_{1} \otimes U_{1}\right)\left(V_{1} \otimes V_{1}\right)^{\top}\right) \boldsymbol{x}=f
$$

that is

$$
\left(\mathcal{A}+\mathcal{U V}^{\top}\right) \boldsymbol{x}=f
$$

with $\mathcal{U}=U_{1} \otimes U_{1}, \mathcal{V}=V_{1} \otimes V_{1}$ again of low rank s_{1}^{2}

[^1]Computational methods for certain structured problems
A particular case ${ }^{\text {a }}$:

$$
A \boldsymbol{X}+\boldsymbol{X} A^{\top}+M_{1} \boldsymbol{X} M_{1}+\ldots+M_{\ell} \boldsymbol{X} M_{\ell}=F,
$$

with $A \in \mathbb{R}^{n \times n}, M_{i} \mathrm{~S}$ with very low rank $s_{i}, M_{i}=U_{i} V_{i}^{\top}$

Using the Kronecker form ($\ell=1$):

$$
\left(A \otimes I+I \otimes A+\left(U_{1} \otimes U_{1}\right)\left(V_{1} \otimes V_{1}\right)^{\top}\right) \boldsymbol{x}=f
$$

that is

$$
\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right) \boldsymbol{x}=f
$$

with $\mathcal{U}=U_{1} \otimes U_{1}, \mathcal{V}=V_{1} \otimes V_{1}$ again of low rank s_{1}^{2}
Solution method: Sherman-Morrison-Woodbury formula

$$
\boldsymbol{x}=\left(\mathcal{A}+\mathcal{U} \mathcal{V}^{\top}\right)^{-1} f=\mathcal{A}^{-1} f-\mathcal{A}^{-1} \mathcal{U}\left(I+\mathcal{V}^{\top} \mathcal{A}^{-1} \mathcal{U}\right)^{-1} \mathcal{V}^{\top} \mathcal{A}^{-1} f
$$

[^2]Matrix-oriented Sherman-Morrison-Woodbury formula

$$
\boldsymbol{x}=\mathcal{A}^{-1} f-\mathcal{A}^{-1} \mathcal{U}\left(I+\mathcal{V}^{\top} \mathcal{A}^{-1} \mathcal{U}\right)^{-1} \mathcal{V}^{\top} \mathcal{A}^{-1} f
$$

1. Solve $\mathcal{A} w=f$
2. Solve $\mathcal{A} \mathrm{p}_{j}=\mathrm{u}_{j}$ where $\mathcal{U}=\left[\mathrm{u}_{1}, \ldots, \mathrm{u}_{s^{2}}\right]$ to give $\mathcal{P}=\left[\mathrm{p}_{1}, \ldots, \mathrm{p}_{s^{2}}\right]$;
3. Compute $H=I+\mathcal{V}^{\top} \mathcal{P} \in \mathbb{R}^{s^{2} \times s^{2}}$
4. Solve $H g=\mathcal{V}^{\top} w$
5. Compute $x=w-\mathcal{P} g$.

Matrix-oriented Sherman-Morrison-Woodbury formula

$$
\boldsymbol{x}=\mathcal{A}^{-1} f-\mathcal{A}^{-1} \mathcal{U}\left(I+\mathcal{V}^{\top} \mathcal{A}^{-1} \mathcal{U}\right)^{-1} \mathcal{V}^{\top} \mathcal{A}^{-1} f
$$

1. Solve $\mathcal{A} w=f$
2. Solve $\mathcal{A} \mathrm{p}_{j}=\mathrm{u}_{j}$ where $\mathcal{U}=\left[\mathrm{u}_{1}, \ldots, \mathrm{u}_{s^{2}}\right]$ to give $\mathcal{P}=\left[\mathrm{p}_{1}, \ldots, \mathrm{p}_{s^{2}}\right]$;
3. Compute $H=I+\mathcal{V}^{\top} \mathcal{P} \in \mathbb{R}^{s^{2} \times s^{2}}$
4. Solve $H g=\mathcal{V}^{\top} w$
5. Compute $x=w-\mathcal{P} g$.

Steps 1. and 2.:

$$
w=\mathcal{A}^{-1} f \quad \Leftrightarrow \quad A W+W A^{\top}=F, \quad f=\operatorname{vec}(F)
$$

Analogously for each $\mathrm{p}_{j}=\operatorname{vec}\left(P_{j}\right)$ in step 2

```
AW+W A' = P P Lyapunov equations, with the same A - cheap "direct" solution
```

Matrix-oriented Sherman-Morrison-Woodbury formula

$$
\boldsymbol{x}=\mathcal{A}^{-1} f-\mathcal{A}^{-1} \mathcal{U}\left(I+\mathcal{V}^{\top} \mathcal{A}^{-1} \mathcal{U}\right)^{-1} \mathcal{V}^{\top} \mathcal{A}^{-1} f
$$

1. Solve $\mathcal{A} w=f$
2. Solve $\mathcal{A} \mathrm{p}_{j}=\mathrm{u}_{j}$ where $\mathcal{U}=\left[\mathrm{u}_{1}, \ldots, \mathrm{u}_{s^{2}}\right]$ to give $\mathcal{P}=\left[\mathrm{p}_{1}, \ldots, \mathrm{p}_{s^{2}}\right]$;
3. Compute $H=I+\mathcal{V}^{\top} \mathcal{P} \in \mathbb{R}^{s^{2} \times s^{2}}$
4. Solve $H g=\mathcal{V}^{\top} w$
5. Compute $x=w-\mathcal{P} g$.

Steps 1. and 2.:

$$
w=\mathcal{A}^{-1} f \quad \Leftrightarrow \quad A W+W A^{\top}=F, \quad f=\operatorname{vec}(F)
$$

Analogously for each $\mathrm{p}_{j}=\operatorname{vec}\left(P_{j}\right)$ in step 2

$$
A W+W A^{\top}=P_{j} \text { Lyapunov equations, with the same } A \text { - cheap "direct" solution }
$$

Step 3.

$$
\mathrm{v}_{j}^{\top} \mathcal{A}^{-1} \mathrm{u}_{t}=v_{i}^{\top} P_{t} v_{k}, \quad j=(k-1) s+i
$$

Analogously for $\mathcal{V}^{\top} w$ in step 4

A numerical example

Let X_{\star} be a ref. soln (uniformly distr.random), and rhs computed explicitly

Table 1: Symmetric and dense matrix A and $U_{1}, U_{2}(\ell=2)$ for various ranks s_{1}, s_{2}

Hao and Simoncini, 2021. See also Damm, 2008, Massei etal 2018.

Conclusions

- Rich setting for new algorithmic strategies
- Certain approaches appropriate for solving linear tensor equations
- Devise more general "direct" solvers, to be used (also) in the projection phase!

Visit: www.dm.unibo.it/~simoncin
Email address: valeria.simoncini@unibo.it
REFERENCES

1. Yue Hao and V. S., Matrix equation solving of PDEs in polygonal domains using conformal mappings. Journal of Numerical Mathematics, vol. 29, no. 3, 2021
2. Yue Hao and V. S., The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications, Numer. Linear Algebra w/Appl. 28 (5), 2021
3. Catherine E. Powell, David Silvester and V. S., An efficient reduced basis solver for stochastic Galerkin matrix equations, SIAM J. Scientific Computing, 39 (1), (2017).
4. Davide Palitta and V. S., Matrix-equation-based strategies for convection-diffusion equations, BIT Numerical Mathematics, 56-2, (2016).
5. V.S., Computational methods for linear matrix equations,SIAM Review, 58-3(2016)

[^0]: ${ }^{\text {a }}$ In fact, terms in the form $M_{i} \boldsymbol{X} N_{i}$ can also be treated

[^1]: ${ }^{\text {a }}$ In fact, terms in the form $M_{i} \boldsymbol{X} N_{i}$ can also be treated

[^2]: ${ }^{\text {a }}$ In fact, terms in the form $M_{i} \boldsymbol{X} N_{i}$ can also be treated

