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Outline

e Algebraic linear systems - the problem
e Sparse matrices and sparse formats
e Symmetric vs nonsymmetric matrices

e State-of-the-art solvers. First steps

Lectures: see https://www.dm.unibo.it/ simoncin/corso.html



The Problem

Az=b or AX=DB, B=][b,...,b

A e C"" B full column rank, s < n

e A large and sparse
e A large and structured: blocks, banded, ...
e A functional: A = CS~!D, preconditioned, integral, ...



Sparse matrices. |

Matrices stemming from discretizations have special pattern:

0w 0 0
10k 1o} 1of
20} 20 20 o%e
30 30 20k
40 40 40-
501 50 sol
60} 60 6ol
701 701 70
80} 8ol sol
90 90 W0 o ©° ° e
1006, ‘ ‘ ‘ ‘ ‘ ‘ ‘ 100k ‘ ‘ ‘ 1008 A Y R L e
0 10 20 30 40 50 60 70 80 90 100 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

nz = 460 nz = 460

Same matrix, different ordering of the unknowns

large dimensions, only low percentage of nonzero elements per row



Sparse matrices. Different applications
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Sparse matrices. |l

Memory allocation of generic sparse matrices:

e Coordinate format
e Compressed sparse row format

e Compressed sparse column format



Sparse matrices. Il

Coordinate format (C0O)
a(nnz), ia(nnz), ja(anz), for A(¢,7), nnz # nonzeros

simple, flexible. Often used to store on disk.

Compressed sparse row format (CSR)
a(nnz), ia(n+1), ja(anz), for A(z,7), n matrix dimension
(ia(n+1) contains the pointer to the first element of next row)

very effective for matrix-vector multiplies

Compressed sparse column format (Csc)

Same as CSR but for the columns



Sparse matrices. |l

y = Ax

Typical matrix-vector operation in Compressed sparse row format:
a(nnz), ia(n+1), ja(anz), for A(7,7), n matrix dimension
do 100 i = 1,n

C compute the inner product of row i with vector x

t = 0.0d0
do 99 k=ia(i), ia(i+1)-1
t =t + a(k)*x(jalk))

99 continue
C store result in y(i)

y(A) =t
100 continue



Sparse matrices. Reordering of the entries

Matrix market. matrix CAN_1072 (structure problem in aircraft design)

Original sparsity pattern symamd reordering
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Sparse matrices. An Example

Factor U in LU factorization A = LU:

A with original sparsity pattern A with symamd reordering

Factor U, original ordering Factor U, symamd permutation
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Solution methods for large matrices
Discretization of 2D and 3D problems leads to large matrices A
(size O(10%), k =5 — 8)

= (Optimized) LU decomposition too expensive

Alternatives do not rely on explicit factorizations !
e lterative methods: Projection-type methods (*)
e Geometric multigrid methods
e Algebraic multigrid methods

e Problem-related optimized methods

11



Projection/Reduction methods for large scale linear systems
Outline
e Projection and polynomial -type methods

e Coefficient matrix role in tailoring the solution strategy
- Real symmetric or complex Hermitian
- Complex symmetric and H-symmetric

- Complex/Real non-Hermitian

e Stopping criteria and inexactness

12



The Problem

Az =b or AX=DB, B=][b,...,b

A e C*""™ B full column rank, s < n

e A large and sparse
e A large and structured: blocks, banded, ...
e A functional: A = CS~!D, preconditioned, integral, ...
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The Problem

Az =b or AX=DB, B=][b,...,b

A e C*""™ B full column rank, s < n

e A large and sparse
e A large and structured: blocks, banded, ...
e A functional: A = CS~!D, preconditioned, integral, ...

The solution approach. Generate sequence of approximate solutions:

{x07x17x27"°}7 Tk —7k—soco L

14



Occurrence of the problem

Very broad range of applications in Engineering and Scientific

Computing

Original application context:

e Discretization of 2D and 3D PDEs

(linear steady state, nonlinear, evolutive, etc.)
e Eigenvalue problems
e Approximation of matrix functions

e Workhorses of more advanced techniques

15



Relevant Bibliographic Pointers

YOUSEF SAAD

Iterative methods for sparse linear systems

SIAM, Society for Industrial and Applied Mathematics, 2003, 2nd
edition.

VALERIA SIMONCINI AND DANIEL B. SZYLD

Recent developments in Krylov Subspace Methods for linear systems

Numerical Linear Algebra with Appl., v. 14, n.1 (2007), pp.1-59.

16



“Projection” methods (or, reduction methods)

e Approximation vector space K,,. At each iteration m

{x;,} such that x,, € K,,

K,,: dimension® m, with the “expansion” property:

Km g Km+1

e Computation of iterate. Galerkin condition:
residual r,,:=b—-—Ax,, 1 K,

= This condition uniquely defines x,, € K,,

2 At most

17



A well established code

Classical Conjugate Gradient:

Given xg. Set rg = b — Axg, po = 70

for: =0,1,...

>k
p; Ap;

o —
Tit1 = Tj + PiQ
rig1 =Ti — Apioy

3; _ Tip1Ap
i+l prAp;

Pi+1 = T + Pifit1
end

* At each iteration: 1 Mxv, 3 -axpys, 2 -dots

* Short-term recurrence =-: computational cost is constant at each iteration

* Implicit space generation, no explicit computation of the orthonormal basis!

18



The Block Conjugate Gradient

Ry =B — AX,y, Ph= Ry € C"*3
fort =0,1,...
a; = (PFAP) " (RfR;) € C5*5
Xit1 = X; + P
Ri11 =R, — AP«
Bi1 = (PFAP;) ' (R}, | AP;) € C***
P =R+ PB;,,

end

19



Optimality property of Galerkin projection method

A symmetric and positive definite. Let x* be the true solution.
Galerkin property: Impose that

residual r,, =b—-—Ax,, 1 K,

is equivalent to: Find

X, solution to  min ||x* — x|[a
xcK,,

where || - || is the energy norm, namely [|x[|% = (x, Ax)

20



Convergence and spectral properties

e In exact arithmetic (i.e., in theory), finite termination property

e A-priori bound for energy norm of the error:
If K,, =span{b,Ab,...,A™ b}, then

Ve —1\"
b xala <2 (V) I - ol

>\max (A)

where Kk = i (A

(Conjugate Gradients, Hestenes & Stiefel, '52)
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Convergence and spectral properties

e In exact arithmetic (i.e., in theory), finite termination property

e A-priori bound for energy norm of the error:
If K,, =span{b,Ab,...,A™ b}, then

Ve —1\"
b xala <2 (V) I - ol

Amax (A)

where Kk = i (A

(Conjugate Gradients, Hestenes & Stiefel, '52)

Consequences:
e Convergence: The closer s to 1 the faster

e Convergence depends on spectral properties, not directly on
problem size!

22



PDE discretization and linear system solves

—Au=f, ulaq = ug.

A 2D Poisson operator = A symmetric and positive definite

CG: Number of iterations k£ depends on cond(A) := Amax (4)

Amin (4)
number of nodes cond(A) # its
n per dimension tol = 10~ 10
23 32.16 10
24 116.46 31
2°  440.69 66
20 1711.17 132

Stopping criterion: 7 := b — Axy small enough in some norm
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Discretization and linear system solves

10%

10}

10°}
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3

For fine discretizations, convergence is slow !
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A more general picture. Nonsymmetric problems

e A normal, AA* = A*A
e A (highly) non-normal, ||[AA* — A*A|| >0

e A "Hermitian” in disguise:

25



A more general picture. Nonsymmetric problems

e A normal, AA* = A*A
e A (highly) non-normal, ||[AA* — A*A|| >0

e A “Hermitian” in disguise:

* A=M+ol, 0 € C, M € R*"™"™ symmetric
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A more general picture. Nonsymmetric problems

e A normal, AA* = A*A
e A (highly) non-normal, ||[AA* — A*A|| >0

e A “Hermitian” in disguise:
* A=M+ol, 0 € C, M € R*"™"™ symmetric
* A=M+0cH, 0 € C, M,H € R" "™ symmetric
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A more general picture. Nonsymmetric problems

e A normal, AA* = A*A
e A (highly) non-normal, ||AA* — A*Al| >0

e A “Hermitian” in disguise:
* A=M+o0l, 0 € C, M € R"™™ symmetric
* A=M+ocH, 0 € C, M,H € R" "™ symmetric

* There exists nonsing. Herm. H € C™"*™ such that HA = A*H,
e.g. M,C Hermitian

M
A= , H= :
_B*

Q W
~
|
~
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A more general picture. Nonsymmetric problems

e A normal, AA* = A*A
e A (highly) non-normal, ||AA* — A*Al| >0

e A “Hermitian” in disguise:
* A=M+o0l, 0 € C, M € R"™™ symmetric
* A=M+ocH, 0 € C, M,H € R" "™ symmetric

* There exists nonsing. Herm. H € C™"*™ such that HA = A*H,
e.g. M,C Hermitian

M B I
A= , H = :
—-B* C —1

* Ar=b <& A*Axz = A*Db (not recommended in general...)

29



Outline

e What is the added difficulty with A non-Hermitian 7
e How to handle “Symmetry in disguise”

e Non-normal (non-Hermitian) case
* Long-term recurrences and their problems

* Coping with them = Restarted, truncated, flexible

* Making it without = short-term recurrences

e Tricks for all trades

30



What goes “wrong” with A non-Hermitian. |

{x}, with x € 20+ Ki(A, 1) = span{rg, Arg, ..., A" 1ry}
Let Vi = [v1,...,v%] be a (orthogonal) basis of K (A, rg). Then

Ty = xo + Viyk, yr € C*

A condition is required to specify vy;.

31



What goes “wrong” with A non-Hermitian. |

{x}, with x € 20+ Ki(A, 1) = span{rg, Arg, ..., A" 1ry}
Let Vi = [v1,...,v%] be a (orthogonal) basis of K (A, rg). Then

Ty = xo + Viyk, yr € C*

A condition is required to specify y;. For instance:
Tk — b — Al‘k =To — Akak 1 Kk(A,To) Vk*’l“k =0
(Galerkin condition, again!) so that

32



What goes “wrong” with A non-Hermitian. |

{x1}, with x, € 2o+ Ki(A,19) = span{rg, Arg, ..., A¥ 1}
Let Vi = [v1,...,v%] be a (orthogonal) basis of K (A, rg). Then
Ty = xo + Viyk, yr € C*
A condition is required to specify y;. For instance:
rp:=b—Axy=1r9g— AVieyr L Ki(A, 1) Viir, =0
(Galerkin condition, again!) so that
0=Vire=V'ro =V AViyr < yi s.t. (V' AVi)yr = V' 1o
Hence
T =20+ Vi (ViEAVL) Vi with  Vi'rg = eq||ro]|

And: V¥ AV} upper Hessenberg (Gram-Schmidt procedure to build V})

33



What goes “wrong” with A non-Hermitian. [l

If A were Hpd = V;7AVj also Hpd = tridiagonal
Vi AV = L Ly, Ly, bidiagonal
e = o+ Vil Ly eallrol

= X0+ Vk—lL];_*lL];_llelHTOH + POk

= Tk—1 t+ PrOk

with pg € span{vi_1, vk}

(development underlying Conjugate Gradient)

34



What goes “wrong” with A non-Hermitian. [l

If A were Hpd = V;7AVj also Hpd = tridiagonal
Vi AV = L Ly, Ly, bidiagonal

e = x0+ Vil "L er||rol]
= x0+ Vi1 L5 L erlroll + prok
= Tg-1 T PrQ
with pg € span{vi_1, vk}

(development underlying Conjugate Gradient)

A non-Hermitian = V7 AV}, only upper Hessenberg

pr € span{vy, ..., vk}

35



What goes “wrong” with A non-Hermitian. |lI

pr € span{vy, ..., vk}, with {v1,..., v} orthogonal basis

Alternatives
e Give up orthogonal basis, V'V, = I}
e Give up optimality condition, e.g. rp L Ki(A,7g)

e Resume symmetry

36



Symmetry in disguise. Complex symmetric shifted systems. 1.

Case 1: A=M+ol, MecR" ocecC
E.g.: Helmholtz equation (wave problems such as vibrating strings and membranes)
Trick: replace * (conj. transp.) with T (transp.)

A=A" complex symmetric

Apply CG with T
Given zg. Set rg = b — Axq, po = 70

fore =0,1,...

Pi+1 = Ti + pifit1

end

37



Symmetry in disguise. Complex symmetric shifted systems. 2.

A=M+ol: Apply CG with T

Properties:
o V) real: Kk(A,To):Kk(A—I—O'],?“())
e [ does not define an inner product!

o VAV, =V, MV}, + oI

If S(0) # 0 then V,' AV} is nonsingular = No breakdown

The same code applies in case of any A complex symmetric (A= A")

38



H-symmetry
A is H-Hermitian if there exists H € C™*™ Hermitian, nonsingular s.t.
HA=A"H

(H-symmetric if HA = AT H with H is symmetric)

39



H-symmetry
A is H-Hermitian if there exists H € C™*™ Hermitian, nonsingular s.t.

HA=A"H

(H-symmetric if HA = AT H with H is symmetric)

If H is Hpd (and HA is also Hpd), use CG in the H-inner product:
Given xg. Set rg = b — Axq, po = 70

fore =0,1,...

o — ry Hr;
v plHAp;

Tit1 = T5 + Piy;

rit1 =1 — Apioy

il p; HAp;

Di+1 =T + Pifit1
end

(H not Hpd = see later)

40



First Summary

Symmetry in disguise:
e Shifted matrices, A = M + oI, M real symmetric

e Complex symmetric matrices

e [{-symmetric or H-Hermitian matrices

41



Long-term recurrences

K (A, 1) = span{rg, Arg, ..., A" 1ry}, Vi orth. basis

k
1. Arnoldi process : v 11 « Avg — Zvjhj,k, that is
j=1

AV = Vi Hy + b1 gVg1€er, = Vier1.Hy, (He =V, AVy)

2. xp = xo + Viyr

42



Long-term recurrences

K (A, 1) = span{rg, Arg, ..., A" 1ry}, Vi orth. basis

k
1. Arnoldi process : v 11 « Avg — Zvjhj,k, that is
j=1

AV = Vi Hy + b1 gVg1€er, = Vier1.Hy, (Hy = V7 AVL)
2. xp = xo + Viyr

e GMRES. Particular Petrov-Galerkin condition:

rr L AKy =  yrs.t. myin |70 — AV

e FOM. Galerkin condition: (Hj nonsingular)

re L K =  ygs.t. Hyy = eq||ro|

43



GMRES
AV = Vi Hy ro = Vit+1e180

Crucial property:

myin |ro — AViy| =
= myin [Vit1(e1Bo — Hyy)|

= myin le1Bo — Hy|

Least squares problem expands at each iteration.

QR decomposition of H, only updated, not recomputed from scratch.

44



Block GMRES
RO :B—AAAXVO7 Kk<A7RO) :Span{RoaARO,--.,Ak_lRo}7
U, orth. basis, Uy = [Uy,Us, ..., U] € C*xks

Block Arnoldi process (s MxV + Gram-Schmidt)
= AUy = U Hi + Upp1Xk11,6 L), = Up1H,, (Hr = U AUy)

m};n | Ry — AULY || = m};n | Eip—H, Y| Ro=Up
0 0 ... [
1 O ]
H, = |0 O N
O O [
0o O O O]
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Block GMRES
A € ROH09X0400: FD discretiz. of L(u) = —Au+ 37 u, in [—1,1]7

0
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norm of residual

10

10

-10

0 50 100 150 200 250 300 350
number of iterations

10
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Coping with long-term recurrences

Restarted, Truncated, etc variants.

47



Coping with long-term recurrences

Restarted, Truncated, etc variants.

Restarted: Choose My ax.

Set x = xg, 70 = b — Axg

forie=1,2,...
z < GMRES(A, rg, Mmax) (or other method)
r—xTr+z, 1r9o=b—Ax

Check Convergence

48



Pros and Cons
Pros:
e Shorter dependencies

e Lower and fixed memory requirements

49



Pros and Cons
Pros:
e Shorter dependencies

e Lower and fixed memory requirements

Cons:

e All optimality properties are lost

Kmmax (A7 réO)) —|_ Km

max ° Mmax

e Additional parameter. What value for m 5?7

50
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A problem with the restarting parameter?

norm of relative residual

GMRES(15)

GMRES(20)

100 200

300 400 500 600 700
Number of Matrix-vector multiplies
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A problem with the restarting parameter? ... or with the method?
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Explanation

K

Mmax

(A, + K (A Y+

. Mmax

(A, ré(”) + K

Mmax

GMRES: r(()k) C range(V(k_l) ). Almost stagnation: — rék) X v%k_l)

Mmax+1
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Explanation

K

Mmax

(A, + K (A )Y+

° Mmax

(A, r(gO)) + K

mmax

GMRES: r(()k> c range(V(k_l) ). Almost stagnation: — rék) X v§k_1)

Mmax+1

FOM: rék) x pF ) Subspace keeps growing

Mmax+1
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Truncating

Only local orthogonalization (k-term recurrence, H,, banded)

55



Only local orthogonalization (k-term recurrence, H,, banded)

Truncating

norm ot residual
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Truncating

...but not always good

norm oft residual

NP AR SAPIEN
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Making it without long-term recurrences: short-term recurrences for A
non-Hermitian

e Non-Hermitian Lanczos
e BiCGStab(/): ¢ iterations of GMRES at every step

e IDR(s): rx € Gi, where G111 C Gy
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Stopping criterion: Problem dependence

Choice of tolerance:

e Direct method accurate up to machine precision (likely)

e |terative method accurate up to what is wanted (hopefully)
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Stopping criterion: Problem dependence

Choice of tolerance:

e Direct method accurate up to machine precision (likely)
e |terative method accurate up to what is wanted (hopefully)

Algebraic problem: Discretization of PDEs
error  — O(h)

h discretization parameter...

60



Stopping criterion: Problem dependence

Choice of criterion and norm:

16 — Axk]|2 VS. 16 — Az«
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Stopping criterion: Problem dependence

Choice of criterion and norm:

16 — Axk]|2 VS. 16 — Az«

For instance, CG optimal: (||z||3 = z* Az)

min |16 — Azg||a—1 = min |z — x| a
xr€xo+Ki(A,ro) xr€xo+Ki(A,ro)

Available: Cheap, reliable estimates of ||z — x| 4
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Stopping criterion: Problem dependence

Choice of criterion and norm:

16 — Axkl|2 VS. 16 — Az«

For instance, CG optimal: (||z||% = z*Az)

min 16— Azg||a—1 = min |z — k|| a
rrE€Exo+Ki(A,ro) rr€xo+Ki(A,ro)

Available: Cheap, reliable estimates of ||z — x| 4

For instance, matrix (G associated with FE error measure:

min Hb — AﬂijG
Tk
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Matrix dependence

A may be very ill-conditioned

= small residual does not necessarily imply small error

1 [[o— Azl _ [|lz" — x4 b — Axy||
< < K(A)
k(A) 0] [z | 0]
Well-known fact, but often not used
1o — Azy]| |0 — Ay
10]] [0]] + (| All« |||

(here g = 0)
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Matrix dependence

Inner-outer methods. e.g. Solve
BM™'B'z=5b

Each multiplication with A = BM !B requires solving a system
with M

— BT

U v
u=Av & u solves M1 =
u = Bu

How accurately should one solve with M7
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Matrix dependence

Inner-outer methods. e.g. Solve
BM™'B'z=5b

Each multiplication with A = BM !B requires solving a system
with M

— BT

U v
u=Av & u solves M1 =
u = Bu

How accurately should one solve with M7

Note: True residual 7. = b — BM B " x. not available!

66



How accurately should one solve with M7

Typically: Inner tolerance < Outer tolerance

But: if optimal Krylov method is used to solve BM ~'B "2 = b then:

Outer toleranc_:e
current outer residual

Inner tolerance = ¢ -
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Conclusions on methods

e Computational issues for Krylov solvers well understood
e Other tricks can be used (but not usually in black-box routines)
e Many ideas have wider applicability

e Theory is still under development

http://www.dm.unibo.it/” simoncin

valeria.simoncini@unibo.it
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Preconditioning techniques
Determine matrix P such that
(PA)x = Pb
is “easier’ to solve than Axz = b, that is
e Takes less CPU time
e P is cheap to construct
e P is reasonably cheap to apply

Note: Typically, P used in operators such as y < Pv
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Preconditioning techniques
Determine matrix P such that
(PA)x = Pb
is “easier’ to solve than Axz = b, that is
e Takes less CPU time
e P is cheap to construct
e P is reasonably cheap to apply

Note: Typically, P used in operators such as y < Pv

Choice criteria :

o Pst. PA= al, with I identity matrix
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Preconditioning techniques
Determine matrix P such that
(PA)x = Pb
is “easier’ to solve than Axz = b, that is
e Takes less CPU time
e P is cheap to construct
e P is reasonably cheap to apply

Note: Typically, P used in operators such as y < Pv

Choice criteria :
o Pst. PA= al, with I identity matrix

e P s.t. P spectral properties similar to those of A™*
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Preconditioning techniques
Determine matrix P such that
(PA)x = Pb
is “easier’ to solve than Axz = b, that is
e Takes less CPU time
e P is cheap to construct
e P is reasonably cheap to apply

Note: Typically, P used in operators such as y < Pv

Choice criteria :
o Pst. PA= al, with I identity matrix
e P s.t. P spectral properties similar to those of A™*
e P “mimicks” the operator behind A

72



Preconditioning. 2
(PA)x = Pb
Classical strategy:

Determine Pas P=P 1 conP~ A

P lAz =P b

73



Preconditioning. 2
(PA)x = Pb
Classical strategy:

Determine Pas P=P lcon P~ A

P~ tAr =P 1
hoping that:
= Pr~Athen P '~ A ' sothat P 1A~ T
= P! cheap to apply (via y + P~ 1v), that is, solving
Py =wv
is far less expensive than Ax = b

*x Example: P = diag(A): cheap, but little effective....
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An example: Cholesky incomplete decomposition
A sym.pos.def. A= LLT ~ LyL}

Lo obtained from L by threshold chopping (element values below tol
zeroed out)

L Original approximation L

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
nz = 1009 nz = 478

A corresponds to the Poisson operator, and tol = 1072
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A possible strategy for incomplete LU
(ILUT, Algorithm 10.6, Saad)

A n x n, "threshold dropping” strategy
for 1 =1...n do
w = a;. (with w= (wy,...,wy))
for k=1....i—1 and wg # 0 do
W 1= W/ ak k
Apply the ¢ ‘dropping rule’’ to wy
If wy #0, w:=w — wiuyg,.,end
endfor

Apply the ¢ ‘dropping rule’’ to the row w

© 0 N O O & W N -

l@lj—J_ZZQULi—la WUj 4:n — Win

[
o

endfor
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zero threshold: ILU(0) and CHOLINC(0)
A =~ LU such that L and U have the same sparsity pattern as A

(nnz(L + U - speye(size(A))) = nnz(A))

L LL" A
0 0 0
20 20 20
40 40 40
60 60 60
80 80 80
100 ' 100 ' 100 '
0 50 100 0 50 100 0 50 100
nz = 280 nz = 622 nz = 460

...also other strategies...

THEOREM. If A is a P-matrix, then there exists an incomplete

factorization of A with fixed zero sparsity pattern, such that
A = LU — R with LU non-singular
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PCG, maintaing symmetry

For A sym pos.def., A~ P = LL". The preconditioned problem:

Ar=b = L AL T LTx="L""1p,
Y

A & b
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PCG, maintaing symmetry

For A sym pos.def., A~ P = LL". The preconditioned problem:

Ar=b = L AL T LTx="L""1p,
Y

A & b

For pO =70 = p — A7) = L-1(b — Az() = L=+ we have

2D — 200 4 05D wi = )
m] —$'7 +ajp ,Wlth a5 = (Aﬁ(j),ﬁ(j))

FU+1) — 7)) _ Oéjgﬁ(j)

G+1) #G+1)
(#(3),#(3))

ﬁ(j-l-l) — F+1) Bjﬁ(j)y con B; = (v
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PCG, maintaing symmetry

For A sym pos.def., A~ P = LL". The preconditioned problem:

Ar=b = L AL T LTx="L""1p,
—— N~ =~

~ ~

A & b

For pO =70 = p — A7) = L-1(b — Az() = L=+ we have

2D — 200 4 05D wi = )
m] —$'7 +ajp ,Wlth a5 = (Aﬁ(j),ﬁ(j))

TG+ — 1T 2G) 1 0 L—1p@) wi o (L=tr@), L=1r0))
L x =Lz 4+ «a; L~ "p*’/, with o = L—TaL—TL-1,0) -1,

FU+1) — 7)) _ Oéjgﬁ(j)

[0+ — p—1,.0) osz_lAL_TL_lp(j)

(G+1) #(G+1))
(#(7) ,7(3))

ﬁ(j-l-l) — F+1) Bjﬁ(j)y with B; = (v

1, G+1) _ 7 —1,.(i+1) =10 @ GHD g1,
L p =L " +6‘7L p 'Wlth /8‘7 o (L_lr(j),L_lfr'(j))
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PCG, maintaing symmetry

For A sym pos.def., A~ P = LL". The preconditioned problem:

Ar=b = L AL T LTx="L""1p,
N ~ 7 -~ N—

A & b
For 5 =70 =p — A7 = L-1(b— Az©) = L=1r() we have

. (f(j) ,f(j))
 (Ap(d) 53Dy

7O+ — £0) + Oéjp'(j)1 with o

G+1) _ .(5) T =T —1_(3) w L (r@) - Tr—1,0))
T =x + o, L L~ "p'Y’, with o = AL TL 1,0 L TL—1,0

FU+D) — =) _ Oéjgﬁ(j)

PO+ — ) _ oszL_TL_lp(j)

~(j+1) _ ~(i+1) =) Ut &1y
Bl =7y + B;p"7’, with B; = 5

Ut T 1,0+

—T;—1_(j4+1) _ ;=T —1_(5+1) =T r—=1_(3) wi -
L™ L™ "p L= Lo or T AL L with By ), LT —1,.0())
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PCG, maintaing symmetry

For A sym pos.def., A~ P = LL*. The preconditioned problem:

Ar=b = L YAL T 1LTx=1L"1b
~- /\/ —~—

A b

For p@ =70 = p — A7 = L=1(b — Az(®) = L=+ we have

With p(O = L=T L1500 = p=1p(0) and 20) = L-TL=1p0) = p=1,0).

(r(3),2(9))
(Ap(3) 50

20D — 20 £ a0 p) with o, =

PGHD — () o, Ap)

(r(G+1) G+1))
(r(3),2(3))

f)(j+1) — G+ 4 ij)(j L with 8; =
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Practical preconditioning strategies

LU-type approx decomposition of A: — Pv=U"1'L~1v

Algebraic multigrid (approximate representation of A on smaller

version of the matrix - recursive procedure)
Geometric multigrid (operator and domain dependent)

Functional approximation of the underlying operator
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A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]2. Matrices of dim n = 2% x 2%

grid incomplete Chol AMG
nodes per dim | # it's CPU time || # it's CPU time
24 11 0.008 6 0.18
20 18 0.007 6 0.20
20 33 0.04 7 0.22
27 58 0.29 7 0.32
25 | 106  2.27 8 0.71

For 28, dim(A) = 65536 x 65536
Il Preconditioned CG with AMG gives grid independent # it's !!
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A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]2. Matrices of dim n = 2% x 2%

grid incomplete Chol AMG
nodes per dim | # it's CPU time || # it's CPU time
24 11 0.008 6 0.18
20 18 0.007 6 0.20
20 33 0.04 7 0.22
27 58 0.29 7 0.32
25 | 106  2.27 8 0.71

For 28, dim(A) = 65536 x 65536
Il Preconditioned CG with AMG gives grid independent # it's !!

Remark: For 28, tic; A\b;toc, gives: Elapsed time is 0.58 secs
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Algebraic Multigrid (AMG)

Consider the original system

Apu = f" (%)
The error vector is split in two parts: an oscillatory component (high
freq.) and a regular component (smooth, low freq.)

A Multigrid (or multilevel) type method for a linear system is made of
two ingredients:

e A smoothing step of the oscillatory portion:

usually a few iterations of a classical method (e.g., Jacobi,
Gauss-Seidel)

e A correction on a coarser grid for the smooth part

The system (%) is approximated by a system on a coarser grid:
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AH fH sych that
Apg = L/ Al f1 =51 f"

Conceptually similar to a Galerkin projection type procedure:
I{L{: restriction operator, full rank
II@: prolongation operator, rull rank
with
7 = 1" (transposition)
Remark: Geometric Multigrid uses the physical grid. Algebraic
Multigrid use the matrix elements

(matrix indexes = grid nodes)
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Algebraic Multigrid (AMG)

General procedure (on two grids):

1. Perform n; steps of smoothing (e.g., Jacobi) on A,u" = f7"

2. Compute the residual " = f* — Ayuh = Ae”
3. Project (restrict) to the coarse grid r# = [[1rh
4. Solve on coarse grid: Agef! =rH

5. Add (prolong) u” := u" + Ihe'?

6. Take no steps of smoothing on A,u"* = f"
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Algebraic Multigrid (AMG). The coarse grid

Determine Ag from Ap, Ap is a subset of the rows/columns of A,

(strong connection among the elements of Ax)

DEF. Let 6 € (0, 1] be a fixed threshold. The variable u; strongly depends
on the variable u; if
—a;; > —a;
ai; > Hril?aéic{ @ik }

=- non-diagonal positive elements have a weak connection

The following steps should be taken (where: node= pair of indexes)
1. Define a “strength” matrix (As) by eliminating the weak connections
2. Choose an independent set of strong nodes of A¢

3. Add possible nodes to have a correct proloungation operator
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Spectral equivalence

Under particular conditions® on the matrix A, it can be proved that the
AMG preconditioner is spectrally equivalent to A, that is:

There exist a1, @2 > 0 independent of the dimension of A such that

ai(z, Pr) < (z, Az) < az(z, Px), Vax # 0

2e.g., if A is Hpd is an M-matrix, that is with a;; > 0 V¢ and a;; < 0 Vi # j,
with non-negative inverse - the usual discretization of the Laplacian.
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Spectral equivalence

Under particular conditions® on the matrix A, it can be proved that the
AMG preconditioner is spectrally equivalent to A, that is:

There exist a1, a2 > 0 independent of the dimension of A such that

ai(z, Pr) < (z,Ar) < az(z, Px), Vz #£ 0

In our context:
P YAy =\ & Av = \Pv

so that
a= A o @A) s B A7)
(v, Pv) z#0 (x, Px) z#0 (x, Px)
= The spectral interval of the preconditioned problems does not

depend on the problem dimension (or on the grid!)

2e.g., if A is Hpd is an M-matrix, that is with a;; > 0 V¢ and a;; < 0 Vi # j,
with non-negative inverse - the usual discretization of the Laplacian.
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