Prova scritta di Istituzioni di Matematica I - 11 Giugno 2015 Corso di Laurea in Scienze Ambientali - Ravenna

1. (Per secondo parziale) Dopo aver determinato il dominio A della funzione

$$f: A \to \mathbb{R}, \quad f(x) = \ln(x^2 + 4x + 1),$$

trovarne eventuali massimi e minimi relativi ed assoluti.

2. (Per secondo parziale) Calcolare, se esiste, il seguente limite:

$$\lim_{x \to 0^+} \frac{e^x \sin(x)}{1 - \cos(x)}$$

3. (Per secondo parziale) Calcolare, se esiste, il seguente integrale:

$$\int_0^{\frac{\pi}{4}} x \arctan(x) \, \mathrm{d}x$$

4. (**Per secondo parziale**) Determinare, se esiste, la soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ con

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ -2 & 1 & 1 & 1 \\ 0 & -1 & 0 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(Usare il metodo di eliminazione di Gauss)

- 5. Determinare la retta r passante per $P_1 = (1, 1, 1)$ e con vettore direzione $\mathbf{v}^T = [-1, 0, 1]$. Determinare quindi la retta s passante per P_1 e $P_2 = (2, 3, -1)$. Infine, determinare i punti s s che distano 4 dalla retta r.
- 6. i) Determinare tutte le soluzioni complesse z della seguente equazione

$$(z+i)^4 = \frac{(i-1)^3}{i+1}$$

ii) Riportare sul piano complesso tali soluzioni.
iii) Verificare se la seguente disuguaglianza è vera:
 $\left|\frac{i-1}{i+2}-\frac{i+1}{(-i)(3+i)}\right|>\frac{1}{2}$.

Prova scritta di Istituzioni di Matematica I - 11 Giugno 2015 Corso di Laurea in Scienze Ambientali - Ravenna Domande di Teoria

1.	(Per secondo parziale) Quale di queste affermazioni è corretta?
2.	(Per secondo parziale) Siano A l'intervallo $A=[0,1)$ e $B=\{x\in\mathbb{R},x\geq 0\}$
	$\exp(t), t \ge 0$ }. Quale di queste affermazioni è vera?
	$\Box \ A \cap B = A$
	$\Box \ A \cap B = \{1\}$
	$\Box \ A \cap B = \emptyset$
3.	(Per secondo parziale). È dato il sistema omogeneo $Ax=0$, con $A\in\mathbb{R}^{n\times n}$ Quale di queste affermazioni è corretta?
	\Box Il sistema ammette sempre almeno una soluzione
	\Box Il sistema ha come unica soluzione $x=0$
	□ Il sistema non ha soluzioni
4.	È data la retta di \mathbb{R}^2 , $r:a_1x+a_2y=d$, e sia $\mathbf{a}=\begin{bmatrix}a_1\\a_2\end{bmatrix}\in\mathbb{R}^2$. Quale di questo affermazioni è vera?
	\Box Il vettore ${\bf a}$ deve sempre avere norma uno
	\square Il vettore a è ortogonale ad r
	\Box Il vettore a è parallelo ad r

 $\square \ z = \frac{1}{\sqrt{2}}(-1,1)$

 $\square \ z = \frac{1}{\sqrt{2}}(-1, -1)$

5. È dato il numero complesso $z = \frac{1}{\sqrt{2}} e^{i\frac{5}{4}\pi}$. A quale punto in $\mathbb C$ corrisponde?