Prova scritta di Istituzioni di Matematica I 17 Gennaio 2018

Corso di Laurea in Scienze Ambientali - Ravenna

NOME:	COGNOME:	N.MATR.:

1. Dopo aver determinato il dominio A della funzione $f:A\to\mathbb{R},\ f(x)=\frac{\sqrt{1-x^2}}{1+x^2},$ trovarne eventuali massimi e minimi relativi ed assoluti.

Risposte:

Dominio:

Derivata:....

Eventuali punti di massimo e minimo relativo:

Eventuali punti di massimo e minimo assoluto:

2. Calcolare, se esiste, il seguente limite: $\lim_{x\to 1^-} \frac{1-x}{1-\sin(\frac{\pi}{2}x)}$.

Risposta:

3. Calcolare, se esiste, il seguente integrale: $\int_1^3 \left| \frac{x-2}{1+x^2} \right| \, \mathrm{d}x$

Risposta:

4. Dato il sistema omogeneo

$$\begin{pmatrix} \alpha & 2 & -1 \\ 1 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

determinare α in modo che il sistema ammetta soluzioni oltre a quella banale. Per tale valore di α determinare quindi tutte le soluzioni mediante il metodo di eliminazione di Gauss.

Risposte:

Valore di α :

Forma ridotta al termine delle trasformazioni di Gauss:

Soluzioni del sistema:

5. Determinare la distanza tra P=(1,1,-4) ed il piano π di equazione x-y+1=0. Determinare quindi la retta r passante per P e per $Q=(2,-3,1)\in\pi$. Infine, determinare la retta s per Q e perpendicolare a π .

Risposte:

Distanza: Retta r:

Retta s:

6. i) Determinare tutte le soluzioni complesse z della seguente equazione

$$\left(\frac{1}{i}z\right)^3 = \frac{(i-1)^2}{(i+1)^3}.$$

ii) Riportare sul piano complesso tali soluzioni.
iii) Verificare se la seguente disuguaglianza è vera:
 $\left|\frac{1}{(i+1)^2} + \frac{2-i}{3+i}\right| > \sqrt{2} \ .$

Risposte:

Soluzioni:

Disuguaglianza:

Grafico:

Prova scritta di Istituzioni di Matematica I - 17 Gennaio 2018 Corso di Laurea in Scienze Ambientali - Ravenna Domande di Teoria

NOME:	COGNOME:	N.MATR.:
1. Sia $f: A \to \mathbb{I}$ A perchè:	$\mathbb{R}, f(x) = e^{\frac{1}{x}} \in A = \mathbb{R}^+ = \{x \in \mathbb{R}, x > 0\}$	> 0 }. La funzione f è continua in
\square Perchè f è	e derivabile per ogni $x \in \mathbb{R}$ e composizione di due funzioni contine definita su tutto A	ue
2. Sia A un insie	eme ordinato, e supponiamo che esist	ta m , un suo maggiorante. Allora
\Box A non è li	ormente limitato mitato ormente limitato	
-	\times^n la matrice identità. Allora	
$\Box \det(I) = 1$ $\Box \det(I) = 0$ $\Box \det(I) = n$		
_	$\in \mathbb{R}^3 : P = P_0 + t\mathbf{v}, t \in \mathbb{R}$ e r_2 : {P Quale di queste affermazioni è vera?	$\in \mathbb{R}^3 : P = Q_0 + t\mathbf{w}, t \in \mathbb{R} \} due$
\square r_1 e r_2 son \square r_1 e r_2 son	no ortogonali se $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ no ortogonali se e solo se $\mathbf{v} \times \mathbf{w} = 0$ no parallele se $\langle \mathbf{v}, \mathbf{w} \rangle = 0$	
	il prodotto scalare, e $\mathbf{v} \times \mathbf{w}$ è il prod	
$\Box f'(x) = co$ $\Box f'(x) = -$	zione $f(x) = \cos(x)\sin^2(x)$. Allora la $s^2(x) - \sin^2(x)$ $\sin(x) + 2\cos(x)$ $\sin^3(x) + 2\sin(x)\cos^2(x)$	a sua derivata e data da: