Prova scritta di Istituzioni di Matematica I - 29 Giugno 2016 Corso di Laurea in Scienze Ambientali - Ravenna

1. Dopo aver determinato il dominio di definizione della funzione

$$f(x) = \frac{e^{-x}}{1 - x}$$

determinarne gli estremanti relativi e assoluti. Studiarne la convessità.

2. Calcolare, se esiste, il seguente limite

$$\lim_{x \to \pi/2} \frac{e^x(\cos(x))^2}{\sin(x) - 1}$$

3. Calcolare il seguente integrale

$$\int_{-1}^{1} \frac{x-1}{x^3-1} dx$$

4. Determinare lo spazio delle soluzioni del seguente sistema lineare omogeneo

$$\begin{bmatrix} 1 & 2 & -3 & -6 \\ 1 & 1 & -2 & -3 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & -2 & -6 \end{bmatrix} \mathbf{x} = \mathbf{0}.$$

- 5. Dati i punti A = (1, 2, 0), B = (-2, 0, 1), C = (1, -1, 4), determinare l'equazione cartesiana e parametrica del piano passante per questi tre punti. Determinare quindi la retta r ortogonale al piano e passante per A. Determinare infine i punti su r che distano 1 da A.
- 6. Determinare tutte le soluzioni complesse z della seguente equazione

$$(3zi)^3 = \left(\frac{1}{4}i(i+1)\right)^2$$

e farne il grafico. Verificare se la seguente disuguaglianza è vera: $|\frac{1}{2-i} - \frac{2+i}{i+3}| > |2i+1|$.

Prova scritta di Istituzioni di Matematica I - 1 Giugno 2016 Corso di Laurea in Scienze Ambientali - Ravenna Domande di Teoria

N	NOME: COGNOME:	N.MATR.:
1.	Siano $A = \{x \in \mathbb{R}, x > 1\}$ e $B =]1, 3[$ e la loro differenz	za $A \setminus B$. Allora
	$\Box A \setminus B = \{x \in \mathbb{R}, x \ge 3\}$ $\Box A \setminus B = [4, \infty[$ $\Box A \setminus B =]1, \infty[$	
2.	È data la funzione $f(x) = \sin(x)$. Quale di queste affer	mazioni è corretta?
	□ f non è iniettiva su alcun intervallo □ f è iniettiva nell'intervallo $[0, \pi]$ □ f è iniettiva nell'intervallo $[-\frac{\pi}{2}, \frac{\pi}{2}]$	
3.	Sono dati i vettori $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 \\ -3 \\ 6 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$	$\in \mathbb{R}^3$. Allora
	\Box I tre vettori sono complanari e linearmente indipend	lenti
	\Box I tre vettori sono ortogonali tra loro	
	\square I tre vettori sono multipli dello stesso vettore	
4. Quale di queste funzioni è una primitiva di $f(x) = \frac{x}{\sqrt{1+x^2}}$?		${x^2}$?
	$\Box F(x) = \sqrt{1 + x^2}$ $\Box F(x) = \frac{1}{\sqrt{1 + x^2}}$ $\Box F(x) = (1 + x^2)^{1/3}$	
5.	Sia $x_0 = -1$ e $A = \{x \in \mathbb{R}, x > -1\} \cup \{x \in \mathbb{R}, x < affermazioni è corretta?$	-1. Quale di queste
	$\square x_0$ è un punto di accumulazione per A	
$\square x_0$ è un punto interno ad A		
	$\square x_0$ è un punto minorante di A	