On the versatility of Krylov subspaces in modern NLA

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it It is given an operator $v \to \mathcal{A}_{\epsilon}(v)$.

Efficiently solve the given problem in the approximation space

$$\mathcal{K}_m = \operatorname{span}\{\mathbf{v}, \mathcal{A}_{\epsilon_1}(\mathbf{v}), \mathcal{A}_{\epsilon_2}(\mathcal{A}_{\epsilon_1}(\mathbf{v})), \ldots\}, \quad \mathbf{v} \in \mathbb{C}^n$$

with $\dim(\mathcal{K}_m) = m$, where $\mathcal{A}_{\epsilon} \to \mathcal{A}$ for $\epsilon \to 0$ (ϵ may be tuned)

 \star for $\mathcal{A} = \mathcal{A}, \ \epsilon = 0 \Rightarrow \quad \mathcal{K}_m = \operatorname{span}\{v, \mathcal{A}v, \mathcal{A}^2v, \dots, \mathcal{A}^{m-1}v\}$

Examples of \mathcal{A} :

► ...

Solution of (preconditioned) large linear systems,

$$Ax = b$$
 $n \times n$ $\mathcal{A} = A$

Shift-and invert eigensolvers

$$Ax = \lambda Mx,$$
 $||x|| = 1,$ $A = (\sigma M - A)^{-1}$

Preconditioned exponential approximation

$$x = \exp(A)v, \qquad \mathcal{A} = (\gamma I - A)^{-1}$$

Goal: Achieve approximation x_m to x within a fixed tolerance, by using \mathcal{A}_{ϵ} (and not \mathcal{A}), with variable ϵ

Many applications in Scientific Computing

 $\mathcal{A}(v)$ function (linear in v):

- Structured problems (e.g., Schur complement)
- Krylov-based approximations
 - 1. Matrix functions evaluations
 - 2. Matrix equations
- ▶ Preconditioned system: $AP^{-1}x = b$, where $P^{-1}v_i \approx P_i^{-1}v_i$

etc.

Other inexact computations for which the same setting holds

- Round-off error analysis
- Mixed-precision computations (e.g., Gratton, Simon, Titley-Peloquin, Toint
- Truncated Matrix/Tensor computations

Many applications in Scientific Computing

 $\mathcal{A}(v)$ function (linear in v):

- Structured problems (e.g., Schur complement)
- Krylov-based approximations
 - 1. Matrix functions evaluations
 - 2. Matrix equations
- ▶ Preconditioned system: $AP^{-1}x = b$, where $P^{-1}v_i \approx P_i^{-1}v_i$

etc.

Other inexact computations for which the same setting holds

- Round-off error analysis
- Mixed-precision computations (e.g., Gratton, Simon, Titley-Peloquin, Toint)
- Truncated Matrix/Tensor computations

The exact approach

To focus our attention: A = A.

 \mathcal{K}_m Krylov subspace V_m orthogonal basis

Key relation in Krylov subspace methods:

$$AV_m = V_{m+1}\underline{H}_m$$
 $v = V_{m+1}e_1\beta$ $\underline{H}_m = \begin{bmatrix} H_m \\ h_{m+1,m}e_m^T \end{bmatrix}$

System: $x_m \in \mathcal{K}_m \Rightarrow x_m = V_m y_m$ $(x_0 = 0)$

Eigenpb: (θ, y) eigenpair of $H_m \Rightarrow (\theta, V_m y)$ Ritz pair for (λ, x)

The inexact key relation

$$\mathcal{A} = A \quad \rightarrow \quad \mathcal{A}_{\epsilon} \approx A$$

e.g., $\mathcal{A}_{\epsilon} \mathbf{v} := \mathcal{A}\mathbf{v} + \mathbf{w}, \qquad \|\mathbf{w}\| = \epsilon$
$$\mathcal{A}V_{m} = V_{m+1}\underline{H}_{m} + \underbrace{\mathbf{F}_{m}}_{[f_{1}, f_{2}, \dots, f_{m}]} \qquad \mathbf{F}_{m} \text{ error matrix, } \|f_{j}\| = O(\epsilon_{j})$$

How large is F_m allowed to be?

system:

$$r_m = b - AV_m y_m = b - V_{m+1} \underline{H}_m y_m - F_m y_n$$
$$= \underbrace{V_{m+1}(e_1 \beta - \underline{H}_m y_m)}_{-F_m y_m} - F_m y_m$$

computed residual $=: \tilde{r}_m$

eigenproblem:

 $(\theta, V_m y)$

$$r_m = \theta V_m y - A V_m y = v_{m+1} h_{m+1,m} e_m^T y - F_m y$$

The inexact key relation

$$\mathcal{A} = A \quad \rightarrow \quad \mathcal{A}_{\epsilon} \approx A$$

e.g., $\mathcal{A}_{\epsilon} \mathbf{v} := \mathcal{A}\mathbf{v} + \mathbf{w}, \qquad \|\mathbf{w}\| = \epsilon$
$$\mathcal{A}V_{m} = V_{m+1}\underline{H}_{m} + \underbrace{\mathbf{F}_{m}}_{[f_{1}, f_{2}, \dots, f_{m}]} \qquad \mathbf{F}_{m} \text{ error matrix, } \|f_{j}\| = O(\epsilon_{j})$$

How large is
$$F_m$$
 allowed to be?

system:

$$r_{m} = b - AV_{m}y_{m} = b - V_{m+1}\underline{H}_{m}y_{m} - F_{m}y_{m}$$
$$= \underbrace{V_{m+1}(e_{1}\beta - \underline{H}_{m}y_{m})}_{\text{computed period period}} - F_{m}y_{m}$$

computed residual $=: \tilde{r}_m$

eigenproblem:

 $(\theta, V_m y)$

$$r_m = \theta V_m y - A V_m y = v_{m+1} h_{m+1,m} e_m^T y - F_m y$$

The inexact key relation

$$\mathcal{A} = A \quad \rightarrow \quad \mathcal{A}_{\epsilon} \approx A$$

e.g., $\mathcal{A}_{\epsilon} \mathbf{v} := \mathcal{A}\mathbf{v} + \mathbf{w}, \qquad \|\mathbf{w}\| = \epsilon$
$$\mathcal{A}V_{m} = V_{m+1}\underline{H}_{m} + \underbrace{\mathbf{F}_{m}}_{[f_{1}, f_{2}, \dots, f_{m}]} \qquad \mathbf{F}_{m} \text{ error matrix, } \|f_{j}\| = O(\epsilon_{j})$$

How large is F_m allowed to be?

system:

$$r_{m} = b - AV_{m}y_{m} = b - V_{m+1}\underline{H}_{m}y_{m} - F_{m}y_{m}$$
$$= \underbrace{V_{m+1}(e_{1}\beta - \underline{H}_{m}y_{m})}_{\text{computed residual} =: \tilde{r}_{m}} - F_{m}y_{m}$$

eigenproblem:

 $(\theta, V_m y)$

$$\mathbf{r}_m = \theta \mathbf{V}_m \mathbf{y} - A \mathbf{V}_m \mathbf{y} = \mathbf{v}_{m+1} \mathbf{h}_{m+1,m} \mathbf{e}_m^T \mathbf{y} - \mathbf{F}_m \mathbf{y}$$

A dynamic setting

$$F_m y = [f_1, f_2, \dots, f_m] \begin{bmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{bmatrix} = \sum_{i=1}^m f_i \eta_i$$

 \diamond The terms $f_i \eta_i$ need to be small:

$$\|f_i\eta_i\| < \frac{1}{m}\epsilon \quad \forall i \quad \Rightarrow \quad \|F_my\| < \epsilon$$

 \diamond If η_i small \Rightarrow f_i is allowed to be large

Linear systems: The solution pattern

 $y_m = [\eta_1; \eta_2; \ldots; \eta_m]$ depends on the chosen method, e.g.

• Petrov-Galerkin (e.g. GMRES): $y_m = \operatorname{argmin}_y \|e_1\beta - \underline{H}_m y\|$,

$$|\eta_i| \leq rac{1}{\sigma_{\min}(\underline{H}_m)} \|\widetilde{r}_{i-1}\|$$

 \tilde{r}_{i-1} : GMRES computed residual at iteration i-1.

Simoncini & Szyld, '03 (see also Sleijpen & van den Eshof, '04, Bouras-Frayssé '05)

Analogous result for Galerkin methods (e.g. FOM)

Relaxing the inexactness in A

 $A \cdot v_i$ not performed exactly $\Rightarrow (A + E_i) \cdot v_i$ True (unobservable) vs. computed residuals:

$$r_m = b - AV_m y_m = V_{m+1}(e_1\beta - \underline{H}_m y_m) - F_m y_m$$

GMRES: If

(Similar result for FOM)

$$\|E_i\| \le \frac{\sigma_{\min}(\underline{H}_m)}{m} \frac{1}{\|\tilde{r}_{i-1}\|} \varepsilon \quad i = 1, \dots, m$$

then $\|F_m y_m\| \le \varepsilon \implies \|r_m - V_{m+1}(e_1\beta - \underline{H}_m y_m)\| \le \varepsilon$

 \tilde{r}_{i-1} : GMRES computed residual at iteration i-1

An example: Schur complement

$$\underbrace{B^T S^{-1} B}_{A} x = b \qquad \qquad y_i \leftarrow B^T S^{-1} B v_i$$

Inexact matrix-vector product:

$$\begin{cases} \text{Solve } Sw_i = Bv_i & \text{Inexact} \\ \text{Compute } y_i = B^T w_i & \Rightarrow \end{cases} \begin{cases} \text{Approx solve } Sw_i = Bv_i & \Rightarrow \widehat{w}_i \\ \text{Compute } \widehat{y}_i = B^T \widehat{w}_i \end{cases}$$

 $w_i = \widehat{w}_i + \epsilon_i$ ϵ_i error in inner solution

so that

$$Av_i \rightarrow B^T \widehat{w}_i = \underbrace{B^T w_i}_{Av_i} - \underbrace{B^T \epsilon_i}_{-E_i v_i} = (A + E_i)v_i$$

Numerical experiment

Back to the inexact key relation

$$AV_m = V_{m+1}\underline{H}_m + \underbrace{F_m}_{[f_1, f_2, \dots, f_m]} F_m \text{ error matrix, } \|f_j\| = O(\epsilon_j)$$

$$F_m y = [f_1, f_2, \dots, f_m] \begin{bmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{bmatrix} = \sum_{i=1}^m f_i \eta_i$$

 \diamond The terms $f_i \eta_i$ need to be small:

$$\|f_i\eta_i\| < \frac{1}{m}\epsilon \quad \forall i \quad \Rightarrow \quad \|F_my\| < \epsilon$$

\diamond If η_i small \Rightarrow f_i is allowed to be large and the "residual" remains unaltered

This applies to any problem/method involving a component-wise decaying y in the residual norm

Back to the inexact key relation

$$AV_m = V_{m+1}\underline{H}_m + \underbrace{F_m}_{[f_1, f_2, \dots, f_m]} F_m \text{ error matrix, } \|f_j\| = O(\epsilon_j)$$

$$F_m y = [f_1, f_2, \dots, f_m] \begin{bmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{bmatrix} = \sum_{i=1}^m f_i \eta_i$$

 \diamond The terms $f_i \eta_i$ need to be small:

$$\|f_i\eta_i\| < \frac{1}{m}\epsilon \quad \forall i \quad \Rightarrow \quad \|F_my\| < \epsilon$$

 \diamond If η_i small \Rightarrow f_i is allowed to be large and the "residual" remains unaltered

This applies to any problem/method involving a component-wise decaying y in the residual norm

Approximating the evaluation of a matrix function

Given $V_m \in \mathbb{R}^{n \times m}$ whose columns are an orthogonal basis of some approximation space, $0 \neq t \in \mathbb{R}$,

$$f(tA)v \approx \mathbf{y}_m := V_m f(tH_m) e_1, \quad \text{with} \quad H_m = V_m^{\top} A V_m, v = V_m e_1$$

"Residual" evaluation:

$$r_m(t) := |h_{m+1,m} \mathbf{e}_m^T e^{-tH_m} \mathbf{e}_1|, \qquad h_{m+1,m} = v_{m+1}^\top A V_m$$

If y(t) = f(tA)v is the solution to the differential equation $y^{(d)} = Ay$ for some derivative d, then

$$\mathbf{r}_m(t) = A\mathbf{y}_m - \mathbf{y}_m^{(d)} = AV_m f(tH_m)\mathbf{e}_1 - \mathbf{y}_m^{(d)} = \ldots = \mathbf{v}_{m+1}h_{m+1,m}\mathbf{e}_m^{\mathsf{T}}f(tH_m)\mathbf{e}_1$$

Evaluation of a matrix function. The inexact context.

$$AV_m = V_{m+1}\underline{H}_m + F_m, \qquad F_m = \mathcal{E}_m V_m$$

$$\mathbf{r}_{m} = A\mathbf{y}_{m} - \mathbf{y}_{m}^{(d)} = AV_{m}f(H_{m})\mathbf{e}_{1} - \mathbf{y}_{m}^{(d)}$$

$$= -\mathcal{E}_{m}V_{m}f(H_{m})\mathbf{e}_{1} + V_{m}H_{m}f(H_{m})\mathbf{e}_{1} - \mathbf{y}_{m}^{(d)} + \mathbf{v}_{m+1}h_{m+1,m}\mathbf{e}_{m}^{T}f(H_{m})\mathbf{e}_{1}$$

$$= -F_{m}f(H_{m})\mathbf{e}_{1} + \mathbf{v}_{m+1}h_{m+1,m}\mathbf{e}_{m}^{T}f(H_{m})\mathbf{e}_{1}.$$

***** The quantity $\|\mathbf{r}_m\|$ is not available! (*A* is not known), whereas $r(t) = |h_{m+1,m} \mathbf{e}_m^T e^{-tH_m} \mathbf{e}_1|$ computable

Distance between exact and computable residuals: for $F_m = [\mathbf{f}_1, \dots, \mathbf{f}_m]$,

$$|||\mathbf{r}_m|| - r_m| \le ||[\mathbf{f}_1, \dots, \mathbf{f}_m]f(H_m)\mathbf{e}_1|| \le \sum_{j=1}^m ||\mathbf{f}_j|| |\mathbf{e}_j^T f(H_m)\mathbf{e}_1|$$

Proof of element-wise decay of $f(H_m)\mathbf{e}_1$ in Pozza-Simoncini, BIT '19

Evaluation of a matrix function. The inexact context.

$$AV_m = V_{m+1}\underline{H}_m + F_m, \qquad F_m = \mathcal{E}_m V_m$$

$$\mathbf{r}_{m} = A\mathbf{y}_{m} - \mathbf{y}_{m}^{(d)} = AV_{m}f(H_{m})\mathbf{e}_{1} - \mathbf{y}_{m}^{(d)}$$

$$= -\mathcal{E}_{m}V_{m}f(H_{m})\mathbf{e}_{1} + V_{m}H_{m}f(H_{m})\mathbf{e}_{1} - \mathbf{y}_{m}^{(d)} + \mathbf{v}_{m+1}h_{m+1,m}\mathbf{e}_{m}^{T}f(H_{m})\mathbf{e}_{1}$$

$$= -F_{m}f(H_{m})\mathbf{e}_{1} + \mathbf{v}_{m+1}h_{m+1,m}\mathbf{e}_{m}^{T}f(H_{m})\mathbf{e}_{1}.$$

***** The quantity $\|\mathbf{r}_m\|$ is not available! (*A* is not known), whereas $r(t) = |h_{m+1,m} \mathbf{e}_m^T e^{-tH_m} \mathbf{e}_1|$ computable

Distance between exact and computable residuals: for $F_m = [\mathbf{f}_1, \dots, \mathbf{f}_m]$,

$$|\|\mathbf{r}_m\| - r_m| \le \|[\mathbf{f}_1, \dots, \mathbf{f}_m]f(H_m)\mathbf{e}_1\| \le \sum_{j=1}^m \|\mathbf{f}_j\| \|\mathbf{e}_j^T f(H_m)\mathbf{e}_1\|$$

Proof of element-wise decay of $f(H_m)\mathbf{e}_1$ in Pozza-Simoncini, BIT '19

An example

Approximation of $e^{-A}\mathbf{v}$ with $\mathbf{v} = 1$ (normalized)

* Residual norm $\|\mathbf{r}_j\|$ with constant accuracy $\epsilon_j = tol/m$,

* residual norm $\|\mathbf{\bar{r}}_j\|$ with a variable strategy for the perturbation $\bar{\epsilon}_j$ as the inexact Arnoldi method proceeds

Left: For A = Toeplitz(1, 2, 0.1, -1)

Right: For matrix pde225 from the Matrix Market repository

Lyapunov equation (and Sylvester equation)

 $A\boldsymbol{X} + \boldsymbol{X}A^{\top} + BB^{\top} = 0$

Projection-type methods

Given a low dimensional approximation space \mathcal{K} ,

 $\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$ Galerkin condition: $R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$ $V_m^\top R V_m = 0 \qquad \mathcal{K} = \operatorname{Range}(V_m)$

Assume $V_m^\top V_m = I_m$ and let $X_m := V_m Y_m V_m^\top$. Projected Lyapunov equation:

$$V_m^{\top}(AV_mY_mV_m^{\top} + V_mY_mV_m^{\top}A^{\top} + BB^{\top})V_m = 0$$

$$(V_m^{\top}AV_m)Y_m + Y_m(V_m^{\top}A^{\top}V_m) + V_m^{\top}BB^{\top}V_m = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for $\mathcal{K} = \mathcal{K}_m(A, B) = \operatorname{Range}([B, AB, \dots, A^{m-1}B])$ Lyapunov equation (and Sylvester equation)

 $A\boldsymbol{X} + \boldsymbol{X}A^{\top} + BB^{\top} = 0$

Projection-type methods

Given a low dimensional approximation space \mathcal{K} ,

 $\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$ Galerkin condition: $R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$ $V_m^\top R V_m = 0 \qquad \mathcal{K} = \operatorname{Range}(V_m)$

Assume $V_m^{\top}V_m = I_m$ and let $X_m := V_m Y_m V_m^{\top}$. Projected Lyapunov equation:

$$V_m^{\top}(AV_mY_mV_m^{\top} + V_mY_mV_m^{\top}A^{\top} + BB^{\top})V_m = 0$$

$$(V_m^{\top}AV_m)Y_m + Y_m(V_m^{\top}A^{\top}V_m) + V_m^{\top}BB^{\top}V_m = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for $\mathcal{K} = \mathcal{K}_m(A, B) = \operatorname{Range}([B, AB, \dots, A^{m-1}B])$ Lyapunov equation (and Sylvester equation)

 $A\boldsymbol{X} + \boldsymbol{X}A^{\top} + BB^{\top} = 0$

Projection-type methods

Given a low dimensional approximation space \mathcal{K} ,

 $\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$ Galerkin condition: $R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$ $V_m^\top R V_m = 0 \qquad \mathcal{K} = \operatorname{Range}(V_m)$

Assume $V_m^{\top}V_m = I_m$ and let $X_m := V_m Y_m V_m^{\top}$. Projected Lyapunov equation:

$$V_m^{\top}(AV_mY_mV_m^{\top} + V_mY_mV_m^{\top}A^{\top} + BB^{\top})V_m = 0$$

$$(V_m^{\top}AV_m)Y_m + Y_m(V_m^{\top}A^{\top}V_m) + V_m^{\top}BB^{\top}V_m = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for $\mathcal{K} = \mathcal{K}_m(A, B) = \text{Range}([B, AB, \dots, A^{m-1}B])$

Residual and solution decay

$$\begin{aligned} \|R\| &= \|AV_{m}YV_{m}^{\top} + V_{m}YV_{m}^{\top}A^{\top} - V_{m}e_{1}e_{1}^{\top}V_{m}^{\top}\| \\ &= \|V_{m}T_{m}YV_{m}^{\top} + V_{m}YT^{\top}V_{m}^{\top} - V_{m}e_{1}e_{1}^{\top}V_{m}^{\top} \\ &+ v_{m+1}t_{m+1}e_{m}^{\top}YV_{m}^{\top} + V_{m}Ye_{m}t_{m+1}v_{m+1}^{\top}\| \\ &= \|V_{m+1}\begin{bmatrix} T_{m}Y + V_{m}YT^{\top} - e_{1}\|b\|^{2}e_{1}^{\top}V_{m}^{\top} & t_{m+1}e_{m}^{\top}Y \\ & Ye_{m}t_{m+1} & 0 \end{bmatrix} V_{m+1}^{\top}\| \\ &= \|\begin{bmatrix} 0 & t_{m+1}e_{m}^{\top}Y \\ & Ye_{m}t_{m+1} & 0 \end{bmatrix} \| \qquad B = b, \|b\| = 1 \end{aligned}$$

It is sufficient to show that $Y_{i,j} \rightarrow 0$ as i, j grow.

Residual and solution decay

$$\begin{aligned} \|R\| &= \|AV_{m}YV_{m}^{\top} + V_{m}YV_{m}^{\top}A^{\top} - V_{m}e_{1}e_{1}^{\top}V_{m}^{\top}\| \\ &= \|V_{m}T_{m}YV_{m}^{\top} + V_{m}YT^{\top}V_{m}^{\top} - V_{m}e_{1}e_{1}^{\top}V_{m}^{\top} \\ &+ v_{m+1}t_{m+1}e_{m}^{\top}YV_{m}^{\top} + V_{m}Ye_{m}t_{m+1}v_{m+1}^{\top}\| \\ &= \|V_{m+1}\begin{bmatrix} T_{m}Y + V_{m}YT^{\top} - e_{1}\|b\|^{2}e_{1}^{\top}V_{m}^{\top} & t_{m+1}e_{m}^{\top}Y \\ & Ye_{m}t_{m+1} & 0 \end{bmatrix} V_{m+1}^{\top}\| \\ &= \|\begin{bmatrix} 0 & t_{m+1}e_{m}^{\top}Y \\ & Ye_{m}t_{m+1} & 0 \end{bmatrix} \| \qquad B = b, \|b\| = 1 \end{aligned}$$

It is sufficient to show that $Y_{i,j} \rightarrow 0$ as i, j grow.

$$\begin{aligned} |R|| &= \|AV_mYV_m^\top + V_mYV_m^\top A^\top - V_m e_1 e_1^\top V_m^\top + F_mYV_m^\top + V_mYF_m^\top \| \\ &= \|V_{m+1} \begin{bmatrix} 0 & t_{m+1}e_m^\top Y \\ Ye_m t_{m+1} & 0 \end{bmatrix} V_{m+1}^\top + F_mYV_m^\top + V_mYF_m^\top \| \end{aligned}$$

Proofs of element-wise decay in Y:

Standard Krylov (Simoncini '15)

Rational Krylov (Pozza-Simoncini '19, see also Freitag-Kürschner '20)

Inexact computations

Typical decay pattern of Y:

$$AV_m = V_{m+1}\underline{H}_m + \underbrace{F_m}_{[f_1, f_2, \dots, f_m]} F_m$$
 error matrix, $||f_j|| = O(\epsilon_j)$

$$|R|| = ||AV_m YV_m^{\top} + V_m YV_m^{\top}A^{\top} - V_m e_1 e_1^{\top}V_m^{\top} + F_m YV_m^{\top} + V_m YF_m^{\top}||$$

= $||V_{m+1} \begin{bmatrix} 0 & t_{m+1}e_m^{\top}Y \\ Ye_m t_{m+1} & 0 \end{bmatrix} V_{m+1}^{\top} + F_m YV_m^{\top} + V_m YF_m^{\top}||$

Proofs of element-wise decay in Y:

Standard Krylov (Simoncini '15)

Rational Krylov (Pozza-Simoncini '19, see also Freitag-Kürschner '20)

Inexact computations

Typical decay pattern of Y:

$$AV_m = V_{m+1}\underline{H}_m + \underbrace{F_m}_{[f_1, f_2, \dots, f_m]} F_m$$
 error matrix, $||f_j|| = O(\epsilon_j)$

$$|R|| = ||AV_m YV_m^{\top} + V_m YV_m^{\top}A^{\top} - V_m e_1 e_1^{\top}V_m^{\top} + F_m YV_m^{\top} + V_m YF_m^{\top}||$$

= $||V_{m+1} \begin{bmatrix} 0 & t_{m+1}e_m^{\top}Y \\ Ye_m t_{m+1} & 0 \end{bmatrix} V_{m+1}^{\top} + F_m YV_m^{\top} + V_m YF_m^{\top}||$

Proofs of element-wise decay in Y:

- Standard Krylov (Simoncini '15)
- Rational Krylov (Pozza-Simoncini '19, see also Freitag-Kürschner '20)

Multiterm linear matrix equation

$A_1 \boldsymbol{X} B_1 + A_2 \boldsymbol{X} B_2 + \ldots + A_\ell \boldsymbol{X} B_\ell = C$

 $A_i \in \mathbb{R}^{n imes n}, \ B_i \in \mathbb{R}^{m imes m}$, X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

Multiterm linear matrix equation. Classical device

$$A_1 \boldsymbol{X} B_1 + A_2 \boldsymbol{X} B_2 + \ldots + A_\ell \boldsymbol{X} B_\ell = C$$

Kronecker formulation

$$\left(B_1^{\top}\otimes A_1+\ldots+B_\ell^{\top}\otimes A_\ell\right)\mathbf{x}=\mathbf{c} \;\Leftrightarrow\; \mathcal{A}\mathbf{x}=\mathbf{c}$$

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product :
$$M \otimes P = \begin{bmatrix} m_{11}P & \dots & m_{1n}P \\ \vdots & \ddots & \vdots \\ m_{n1}P & \dots & m_{nn}P \end{bmatrix}$$
 and $\operatorname{vec}(AXB) = (B^{\top} \otimes A)\operatorname{vec}(X)$

Alternatives to Kronecker form:

- Fixed point iterations (an "evergreen"...)
- Projection-type methods ⇒ low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

Current very active area of research

Multiterm linear matrix equation. Classical device

$$A_1 \boldsymbol{X} B_1 + A_2 \boldsymbol{X} B_2 + \ldots + A_\ell \boldsymbol{X} B_\ell = C$$

Kronecker formulation

$$\left(B_1^\top \otimes A_1 + \ldots + B_\ell^\top \otimes A_\ell\right) \mathbf{x} = \mathbf{c} \iff \mathcal{A}\mathbf{x} = \mathbf{c}$$

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product :
$$M \otimes P = \begin{bmatrix} m_{11}P & \dots & m_{1n}P \\ \vdots & \ddots & \vdots \\ m_{n1}P & \dots & m_{nn}P \end{bmatrix}$$
 and $\operatorname{vec}(AXB) = (B^{\top} \otimes A)\operatorname{vec}(X)$

Alternatives to Kronecker form:

- Fixed point iterations (an "evergreen"...)
- ▶ Projection-type methods ⇒ low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

Current very active area of research

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $A(\mathbf{X}) = A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format. Truncation operator \mathcal{T} .

Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $||\mathcal{A}(X) - C||_F / ||C||_F \le tol$

- 1. $X_0 = 0$, $R_0 = C$, $P_0 = R_0$, $Q_0 = \mathcal{A}(P_0)$ 2. $\xi_0 = \langle P_0, Q_0 \rangle, \ k = 0$ $\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y)$ 3. While $||R_k||_F > tol$ $\omega_{\mu} = \langle R_{\mu}, P_{\mu} \rangle / \xi_{\mu}$ 4 5 $X_{k+1} = X_k + \omega_k P_k,$ $X_{k+1} \leftarrow \mathcal{T}(X_{k+1})$ $R_{k+1} = C - \mathcal{A}(X_{k+1}).$ Optionally: $R_{k+1} \leftarrow \mathcal{T}(R_{k+1})$ 6 $\beta_k = -\langle R_{k+1}, Q_k \rangle / \xi_k$ 7. $P_{k+1} = R_{k+1} + \beta_k P_k,$ $P_{k+1} \leftarrow \mathcal{T}(P_{k+1})$ 8. $Q_{k+1} = \mathcal{A}(P_{k+1}),$ Optionally: $Q_{k+1} \leftarrow \mathcal{T}(Q_{k+1})$ 9.
- 10. $\xi_{k+1} = \langle P_{k+1}, Q_{k+1} \rangle$ 11. k = k+1
 - 12. end while

Iterates kept in factored form!
Kressner and Tobler, 2011 $\mathcal{T}(X_{k+1})$ acts on the SVD of X_{k+1} :
If X_k and P_k in factored form, then SVD on the augmented factor

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $\mathcal{A}(\mathbf{X}) = A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format. Truncation operator \mathcal{T} .

Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $||\mathcal{A}(X) - C||_F / ||C||_F \leq tol$

- 1. $X_0 = 0$, $R_0 = C$, $P_0 = R_0$, $Q_0 = \mathcal{A}(P_0)$ 2. $\xi_0 = \langle P_0, Q_0 \rangle, \ k = 0$ $\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y)$ 3. While $||R_k||_F > tol$ $\omega_{\mu} = \langle R_{\mu}, P_{\mu} \rangle / \xi_{\mu}$ 4 5 $X_{k+1} = X_k + \omega_k P_k,$ $X_{k+1} \leftarrow \mathcal{T}(X_{k+1})$ $R_{k+1} = C - \mathcal{A}(X_{k+1}),$ Optionally: $R_{k+1} \leftarrow \mathcal{T}(R_{k+1})$ 6 $\beta_k = -\langle R_{k+1}, Q_k \rangle / \xi_k$ 7. $P_{k+1} = R_{k+1} + \beta_k P_k,$ $P_{k+1} \leftarrow \mathcal{T}(P_{k+1})$ 8. $Q_{k+1} = \mathcal{A}(P_{k+1}),$ Optionally: $Q_{k+1} \leftarrow \mathcal{T}(Q_{k+1})$ 9. 10. $\xi_{k+1} = \langle P_{k+1}, Q_{k+1} \rangle$ k = k + 111.
- 12. end while

Iterates kept in factored form! Kressner and Tobler, 2011 $\mathcal{T}(X_{k+1})$ acts on the SVD of X_{k+1} : If X_k and P_k in factored form, then SVD on the augmented factor

Effect of truncation

Let $x_k = \operatorname{vec}(X_k)$ (and similarly for the other variables). Truncation can be written as $x^{(k+1)} = x_{ex}^{(k+1)} + \boldsymbol{e}_X^{(k+1)}, \qquad p^{(k+1)} = p_{ex}^{(k+1)} + \boldsymbol{e}_P^{(k+1)}$ $(\boldsymbol{e}_X^{(k+1)}, \boldsymbol{e}_P^{(k+1)} \text{ local truncation errors})$

TH: Let
$$\Delta_k = \max\{\|\boldsymbol{e}_P^{(k)}\|, \|\boldsymbol{e}_X^{(k)}\|, \|\boldsymbol{e}_P^{(k+1)}\|, \|\boldsymbol{e}_X^{(k+1)}\|\}$$
 and also
 $\delta_k = \min\{\|\boldsymbol{e}_P^{(k)}\|, \|\boldsymbol{e}_X^{(k)}\|, \|\boldsymbol{e}_P^{(k+1)}\|, \|\boldsymbol{e}_X^{(k+1)}\|\}$. Then there exists $\eta \in [0, 1]$ such that

$$\eta \frac{1}{\|\mathcal{A}^{-1}\|} \frac{\delta_{k}}{\|r^{(k+1)}\|} \le \frac{|r^{(k+1)})^{\top} p^{(k)}|}{\|r^{(k+1)}\| \|p^{(k)}\|} \le \|\mathcal{A}\| \frac{\Delta_{k}}{\|r^{(k+1)}\|}$$

and

$$\beta_k = -\frac{(r_{e_X}^{(k+1)})^\top \mathcal{A} \rho^{(k)} - (\mathcal{A} \boldsymbol{e}_X^{(k+1)})^\top \mathcal{A} \rho^{(k)}}{(\rho^{(k)})^\top \mathcal{A} \rho^{(k)}}$$

Moreover,

$$\frac{|r^{(k+1)}| r^{(k)}|}{\|r^{(k+1)}\| \|r^{(k)}\|} \le \gamma \frac{\Delta_k}{\|r^{(k+1)}\|} \qquad \gamma = \|\mathcal{A}p^{(k)}\| + (2|\beta_{k-1}| + |\beta_{k-1}\alpha_k|)\|\mathcal{A}p^{(k-1)}\| + \|r^{(k+1)}\|$$

Effect of truncation

Let $x_k = \operatorname{vec}(X_k)$ (and similarly for the other variables). Truncation can be written as $x^{(k+1)} = x_{ex}^{(k+1)} + \boldsymbol{e}_X^{(k+1)}, \qquad p^{(k+1)} = p_{ex}^{(k+1)} + \boldsymbol{e}_P^{(k+1)}$ $(\boldsymbol{e}_X^{(k+1)}, \boldsymbol{e}_P^{(k+1)} \text{ local truncation errors})$

TH: Let $\Delta_k = \max\{\|\boldsymbol{e}_P^{(k)}\|, \|\boldsymbol{e}_X^{(k)}\|, \|\boldsymbol{e}_P^{(k+1)}\|, \|\boldsymbol{e}_X^{(k+1)}\|\}$ and also $\delta_k = \min\{\|\boldsymbol{e}_P^{(k)}\|, \|\boldsymbol{e}_X^{(k)}\|, \|\boldsymbol{e}_P^{(k+1)}\|, \|\boldsymbol{e}_X^{(k+1)}\|\}\}$. Then there exists $\eta \in [0, 1]$ such that

$$\eta \frac{1}{\|\mathcal{A}^{-1}\|} \frac{\delta_{k}}{\|r^{(k+1)}\|} \leq \frac{|r^{(k+1)})^{\top} p^{(k)}|}{\|r^{(k+1)}\| \|p^{(k)}\|} \leq \|\mathcal{A}\| \frac{\Delta_{k}}{\|r^{(k+1)}\|}$$

and

$$\beta_k = -\frac{(r_{e_X}^{(k+1)})^\top \mathcal{A} p^{(k)} - (\mathcal{A} e_X^{(k+1)})^\top \mathcal{A} p^{(k)}}{(p^{(k)})^\top \mathcal{A} p^{(k)}}$$

Moreover,

$$\frac{|r^{(k+1)})^{\top}r^{(k)}|}{\|r^{(k+1)}\|\|r^{(k)}\|} \leq \gamma \frac{\Delta_k}{\|r^{(k+1)}\|} \qquad \gamma = \|\mathcal{A}p^{(k)}\| + (2|\beta_{k-1}| + |\beta_{k-1}\alpha_k|)\|\mathcal{A}p^{(k-1)}\| + \|r^{(k+1)}\|$$

An example: $AX + XA + MXM = c_1c_1^{\top}$

A: 2D Laplace operator, M = pentadiag(-0.5, -1, 3.2, -1, -0.5), c_1 random entries Truncated CG residual norm (blue line) for different truncation values

Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals and residual and directions

Another example

 $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ with $\lambda_i = \lambda_1 + \frac{(i-1)}{(n-1)}(\lambda_n - \lambda_1)\rho^{n-i}$, $\lambda_1 = 0.1$, $\lambda_n = 100$ M: diagonal matrix with elements logarithmically distributed in $[10^{-2}, 10^0]$ Convergence history of TCG for two truncation tolerances:

- Krylov-based approaches are very flexible
- Relaxation properties are usually not problem dependent
- Relaxation properties arise in disguise
- Extremely useful for practical purposes

Visit: www.dm.unibo.it/~simoncin

Email address: valeria.simoncini@unibo.it