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The problem


 A BT

B −C




 u

v


 =


 f

g




• Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)

• Elasticity problems

• Mixed (FE) formulations of II and IV order elliptic PDEs

• Linearly Constrained Programs

• Linear Regression in Statistics

• Image restoration

• ... Survey: Benzi, Golub and Liesen, Acta Num 2005
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The problem. Simplifications


 A BT

B −C




 u

v


 =


 f

g




• Iterative solution by means of Krylov subspace methods

• Structural properties. Focus for this talk:

⋆ A symmetric positive (semi)definite

⋆ BT tall, possibly rank deficient

⋆ C symmetric positive (semi)definite
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Spectral properties

M =


 A BT

B −C




0 < λn ≤ · · · ≤ λ1 eigs of A

0 = σm ≤ · · · ≤ σ1 sing. vals of B

λmax(C) > 0, BBT + C full rank

spec(M) ⊂ [−a,−b] ∪ [c, d], a, b, c, d > 0

⇒ A large variety of results on the spectrum of M, also for indefinite

and singular A

⇒ Search for good preconditioning strategies...
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General preconditioning strategy

• Find P such that

MP−1û = b û = Pu

is easier (faster) to solve than Mu = b

• A look at efficiency:

- Dealing with P should be cheap

- Storage requirements for P should be low

- Properties (algebraic/functional) should be exploited

Mesh/parameter independence

Structure preserving preconditioners
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Block diagonal Preconditioner

⋆ A nonsing., C = 0:

P0 =


 A 0

0 BA−1BT




⇒ P
− 1

2

0 MP
− 1

2

0 =


 I A− 1

2 BT (BA−1BT )−
1

2

(BA−1BT )−
1

2 BA− 1

2 0




MINRES converges in at most 3 iterations. spec(P
− 1

2

0 MP
− 1

2

0 ) =
{
1, 1

2
±

√
5
2

}

A more practical choice:

P =


 Ã 0

0 S̃


 spd. Ã ≈ A S̃ ≈ BA−1BT

eigs in [−a,−b] ∪ [c, d], a, b, c, d > 0

Still an Indefinite Problem
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Giving up symmetry ...

• Change the preconditioner: Mimic the LU factors

M =


 I O

BA−1 I




A BT

O BA−1BT + C


 ⇒ P ≈


A BT

O BA−1BT + C




• Change the preconditioner: Mimic the Structure

M =


 A BT

B −C


 ⇒ P ≈ M

• Change the matrix: Eliminate indef. M− =


 A BT

−B C




• Change the matrix: Regularize (C = 0)

M ⇒ Mγ =


 A BT

B −γW


 or Mγ =


 A+ 1

γ
BTW−1B BT

B O




8



Giving up symmetry ...

• Change the preconditioner: Mimic the LU factors

M =


 I O

BA−1 I




A BT

O BA−1BT + C


 ⇒ P ≈


A BT

O BA−1BT + C




• Change the preconditioner: Mimic the Structure

M =


 A BT

B −C


 ⇒ P ≈ M

Change the matrix: Eliminate indef. M− =


 A BT

−B C




Change the matrix: Regularize (C = 0)

M ⇒ Mγ =


 A BT

B −γW


 or Mγ =


 A+ 1

γ
BTW−1B BT

B O




9



Giving up symmetry ...

• Change the preconditioner: Mimic the LU factors

M =


 I O

BA−1 I




A BT

O BA−1BT + C


 ⇒ P ≈


A BT

O BA−1BT + C




• Change the preconditioner: Mimic the Structure

M =


 A BT

B −C


 ⇒ P ≈ M

• Change the matrix: Eliminate indef. M− =


 A BT

−B C




Change the matrix: Regularize (C = 0)

M ⇒ Mγ =


 A BT

B −γW


 or Mγ =


 A+ 1

γ
BTW−1B BT

B O




10



Giving up symmetry ...

• Change the preconditioner: Mimic the LU factors

M =


 I O

BA−1 I




A BT

O BA−1BT + C


 ⇒ P ≈


A BT

O BA−1BT + C




• Change the preconditioner: Mimic the Structure

M =


 A BT

B −C


 ⇒ P ≈ M

• Change the matrix: Eliminate indef. M− =


 A BT

−B C




• Change the matrix: Regularize (C = 0)

M ⇒ Mγ =


 A BT

B −γW


 or Mγ =


 A+ 1

γ
BTW−1B BT

B O




11



... But recovering symmetry in disguise

Nonstandard inner product:

Let W be any of MP−1,M−

For spec(W) in R
+, find symmetric matrix H such that

WH = HWT

(that is, W is H-symmetric)

If H is spd then

• W is diagonalizable

• Use PCG on W with H-inner product
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Constraint (Indefinite) Preconditioner

P =


 Ã BT

B −C


 MP−1 =


 AÃ−1(I −Π) + Π ⋆

O I




with Π = B(BÃ−1BT + C)−1BÃ−1

• Constraint equation satisfied at each iteration

• If C nonsing ⇒ all eigs real and positive

• If BTC = 0 and BBT + C > 0 ⇒ all eigs real and positive

⇒ More general cases, B̃ ≈ B, C̃ ≈ C
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The Stokes problem

Minimize

J(u) =
1

2

∫

Ω

|∇u|2dx−
∫

Ω

f · udx

subject to ∇ · u = 0 in Ω

Lagrangian: L(u, p) = J(u) +
∫
Ω
p∇ · udx

Optimality condition on discretized Lagrangian leads to:

 A BT

B −C




 x

y


 =


 f

0




A second-order operator, B first-order operator, C zero-order operator
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The Stokes problem. Contraint preconditioning

P =


Ã BT

B BÃ−1BT − S


 =


 In 0

BÃ−1 Im




Ã 0

0 −S




In Ã−1BT

0 Im




with S ≈ BÃ−1BT + C spd

Selection of Ã, S: Ã = amg(A), S = Q (pressure mass matrix)

IFISS 3.1 (Elman, Ramage, Silvester):

Flow over a backward facing step

Stable Q2-Q1 approximation

(C = 0)

stopping tolerance: 10−6

non-symmetric solver

n m # it.

1538 209 18

5890 769 18

23042 2945 18

91138 11521 17

362498 45569 17
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Selection of Ã, S: Ã = amg(A), S = Q (pressure mass matrix)

IFISS 3.1 (Elman, Ramage, Silvester):

Flow over a backward facing step

Stable Q2-Q1 approximation

(C = 0, B ∈ R
m×n)

stopping tolerance: 10−6

non-symmetric solver

n m # it.

1538 209 18

5890 769 18

23042 2945 18

91138 11521 17

362498 45569 17
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A standard choice: block diagonal preconditioning

P =


 Ã 0

0 S̃


 spd. Ã ≈ A S̃ ≈ BA−1BT

spectrum of MP−1 in [−a,−b] ∪ [c, d], a, b, c, d > 0

⇒ if Ã, A and S̃, BA−1BT spectrally equivalent, then spectrum

ofMP−1 is independent of mesh parameter
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An example. Stokes problem


−∆ −grad

div


 ≈


−∆̃

I




In algebraic terms:

I → mass matrix

−∆̃ → Algebraic MG

(spectrally equivalent matrix)

(cf. K.-A. Mardal & R. Winther

JNLAA 2011)

2D. Final residual norm < 10−6

size(M) its Time (secs)

578 26 0.04

217 26 0.14

8450 26 0.50

132098 26 11.17
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Next: some unexpected behaviors...
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Choice of Schur complement approximation. A quasi-optimal choice

S̃ ≈ BA−1BT

For certain operators, S̃ is quasi-optimal:

spec(BA−1BT S̃−1) well clustered except for few eigenvalues

O

Note: well clustered eigs mesh-independent
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Choice of Schur complement approximation. A quasi-optimal choice

S̃ ≈ BA−1BT

For certain operators, S̃ is quasi-optimal:

spec(BA−1BT S̃−1) well clustered except for few eigenvalues

O

Possibly: well clustered eigs also mesh-independent
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The role of S̃

Claim:

The presence of outliers in BA−1BT S̃−1 is accurately inherited by the

preconditioned matrix MP−1 so that κ(MP−1) ≫ 1

O spec(BA−1BT S̃−1)

O spec(MP−1)

(for a proof, see Olshanskii & Simoncini, SIMAX ’10)
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Stokes type problem with variable viscosity in Ω ⊂ R
d

−divν(x)Du+∇p = f in Ω,

−div u = 0 in Ω,

u = 0 on ∂Ω,

with 0 < νmin ≤ ν(x) ≤ νmax < ∞ (Here, ν(x) = 2µ+ τs
√

ε2+|Du(x)|2
)

u : velocity vector field p : pressure

Du = 1
2 (∇u+∇T

u) rate of deformation tensor

Prec. S: pressure mass matrix wrto weighted product (ν−1·, ·)L2(Ω)
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Performance of Krylov subspace solver MINRES

0 50 100 150 200 250

10
−6

10
−4

10
−2

10
0

deflation of approximate “bad” eigenvectors

Ã = IC(A, δ), δ = 10−2 poor approximation

⇒ also one small positive eig

Bercovier-Engelman model of the Bingham viscoplastic fluid
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Distributed optimal control for time-periodic parabolic equations

Joint work with W. Zulehner and W. Krendl

J(y, u) =
1

2

∫
T

0

∫

Ω

|y(x, t)−yd(x, t)|2 dx dt+
ν

2

∫
T

0

∫

Ω

|u(x, t)|2 dx dt

subject to the time-periodic parabolic problem

∂

∂t
y(x, t)−∆y(x, t) = u(x, t) in QT ,

y(x, t) = 0 on ΣT ,

y(x, 0) = y(x, T ) on Ω,

u(x, 0) = u(x, T ) on Ω.

Here yd(x, t) is a given target (or desired) state and ν > 0 is a cost or

regularization parameter.
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Assuming yd to be time-harmonic (so that there exist y, u

time-harmonic), gives the problem:

Minimize

1

2

∫

Ω

|y(x)− yd(x)|2 dx+
ν

2

∫

Ω

|u(x)|2 dx

subject to

iω y(x)−∆y(x) = u(x) in Ω,

y(x) = 0 on Γ

Solution using Lagrange multipliers, discretization and elimination of

the control, yields:

 M K − iωM

K + iωM − 1
ν
M




y
p


 =


My

d

0



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Solving the saddle point linear system

After simple scaling,




M
√
ν (K − iωM)

√
ν (K + iωM) −M






y

1√
ν
p


 =



My

d

0




Block diagonal Preconditioner:

P =


M +

√
ν (K + ωM) 0

0 M +
√
ν (K + ωM)




• Accurate estimates for the spectral intervals

• Convergence of MINRES independent of the mesh and

regularization parameters
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Convergence history. Staircase behavior
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Explanation of the Staircase behavior

The previous matrix has the form:

M =


A B∗

B −A


 ∈ C

2n×2n,

with A ∈ R
n×n spd, and B ∈ C

n×n complex symmetric, i.e., B = BT

Theorem: Assume that B is nonsingular. Then the eigenvalues µ of

M come in pairs, (µ,−µ), with µ ∈ R.

⇒ MINRES behaves like CG on a matrix having only the positive

eigenvalues, but with twice as many iterations

———————

Remark: Similar setting for more complex structures, e.g., for

Distributed optimal control for the time-periodic Stokes equations
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Convergence history. Staircase behavior
An alternative (indefinite) preconditioner - work in progress:

P =


 0 K + ωM

K + ωM −
1
ν
M




Similar results for the Distributed optimal control for the time-periodic Stokes equations
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Similar results for the Distributed optimal control for the time-periodic Stokes equations
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Final remarks

• Much is known about the behavior of structured preconditioners for well

established problems and formulations

• New problems provide new challenges

• Understanding the underlying Linear algebra may be key

————————
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