On time-dependent matrix-oriented differential problems

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Joint works with
M.C. D'Autilia \& I. Sgura, Univ. Lecce
J. Henning, K. Urban, Ulm Uni.(D), D. Palitta, Univ. Bologna

The differential problem

We are interested in solving

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{2}, t \in \mathcal{T}
$$

with given initial conditions $u(x, y, 0)=u_{0}(x, y)$ and proper b.c.

- \mathcal{L} linear in u (typically 2^{\wedge} order diff operator in space, w/separable coeffs)
- f nonlinear function in u

Discretization: use tensor bases

(finite differences, conformal mappings, IGA, spectral methods, etc.)

The differential problem

We are interested in solving

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{2}, t \in \mathcal{T}
$$

with given initial conditions $u(x, y, 0)=u_{0}(x, y)$ and proper b.c.

- \mathcal{L} linear in u (typically 2^{\wedge} order diff operator in space, w/separable coeffs)
- f nonlinear function in u

Discretization: use tensor bases (finite differences, conformal mappings, IGA, spectral methods, etc.)

Approaches to time discretization

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{d}, d=2,3, t \in \mathcal{T}
$$

- Time marching schemes: classical strategies stemming from ODEs

Lead to
Sequence of (matrix) space problems at subsequent time steps

- All-at-once schemes: time discretization similar to space discretization (tensor basis methods)

Approaches to time discretization

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{d}, d=2,3, t \in \mathcal{T}
$$

- Time marching schemes: classical strategies stemming from ODEs

Lead to
Sequence of (matrix) space problems at subsequent time steps

- All-at-once schemes: time discretization similar to space discretization (tensor basis methods)
Lead to
(Non)linear matrix equations

Approaches to time discretization

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{d}, d=2,3, t \in \mathcal{T}
$$

- Time marching schemes: classical strategies stemming from ODEs

Lead to
Sequence of (matrix) space problems at subsequent time steps

- All-at-once schemes: time discretization similar to space discretization (tensor basis methods)
Lead to
(Non)linear matrix equations

This presentation: exploit matrix-matrix computations throughout the time evolution

Time marching scheme. Matrix-oriented discretization.

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{2}, t \in \mathcal{T}
$$

Linear operator:

$$
\mathcal{L}(u)=\Delta u
$$

Standard (vector) discretization in space, $n_{x} \times n_{y}$ grid:

- $\Delta u \Rightarrow \mathcal{A} \boldsymbol{u} \quad \mathcal{A} \in \mathbb{R}^{n_{x} n_{y} \times n_{x} n_{y}}$
- $f(u, t) \Rightarrow \boldsymbol{f}(\boldsymbol{u}, t) \quad\left(n_{x} n_{y}\right.$ components, evaluated component-wise)
with lexicographic ordering of the rectangle nodes

Matrix-oriented discretization in space:
$\Delta \Delta u \Rightarrow \Delta\|+\| B, \quad \Delta \in \mathbb{R}^{n_{x} \times n_{x}}, B \in \mathbb{R}^{n_{y} \times n_{y}},(U)_{i j} \approx u\left(x_{i}, y_{j}\right)$
$\Rightarrow f(u, t) \Rightarrow \mathcal{F}(\boldsymbol{U}, t)\left(n_{x} \times n_{y}\right.$, evaluated component-wise $)$

Time marching scheme. Matrix-oriented discretization.

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{2}, t \in \mathcal{T}
$$

Linear operator:

$$
\mathcal{L}(u)=\Delta u
$$

Standard (vector) discretization in space, $n_{x} \times n_{y}$ grid:

- $\Delta u \Rightarrow \mathcal{A} \boldsymbol{u} \quad \mathcal{A} \in \mathbb{R}^{n_{x} n_{y} \times n_{x} n_{y}}$
- $f(u, t) \Rightarrow \boldsymbol{f}(\boldsymbol{u}, t) \quad\left(n_{x} n_{y}\right.$ components, evaluated component-wise)
with lexicographic ordering of the rectangle nodes

Matrix-oriented discretization in space:
$-\Delta u \Rightarrow A \boldsymbol{U}+\boldsymbol{U} B, \quad A \in \mathbb{R}^{n_{x} \times n_{x}}, B \in \mathbb{R}^{n_{y} \times n_{y}},(\boldsymbol{U})_{i j} \approx u\left(x_{i}, y_{j}\right)$ with $\mathcal{A}=I \otimes A+B^{\top} \otimes I$

- $f(u, t) \Rightarrow \mathcal{F}(\boldsymbol{U}, t)\left(n_{x} \times n_{y}\right.$, evaluated component-wise $)$

Reminder: matrix formulation of tensor discretization

Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-1}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Let $T=\frac{1}{h^{2}}$ tridiag $(-1, \underline{2},-1)$. Collecting all nodes together,

Therefore, directly from the grid,

Reminder: matrix formulation of tensor discretization

Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
\begin{gathered}
u_{x x}\left(x_{i}, y_{j}\right) \approx \frac{U_{i-1, j}-2 U_{i, j}+U_{i+1, j}}{h^{2}}=\frac{1}{h^{2}}[1,-2,1]\left[\begin{array}{c}
U_{i-1, j} \\
U_{i, j} \\
U_{i+1, j}
\end{array}\right] \\
u_{y y}\left(x_{i}, y_{j}\right) \approx \frac{U_{i, j-1}-2 U_{i, j}+U_{i, j+1}}{h^{2}}=\frac{1}{h^{2}}\left[U_{i, j-j}, U_{i, j}, U_{i, j+1}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Let $T=\frac{1}{h^{2}}$ tridiag $(-1, \underline{2},-1)$. Collecting all nodes together,

$$
-u_{x x} \approx T U, \quad-u_{y y} \approx U T
$$

Therefore, directly from the grid,

$$
-u_{x x}-u_{y y} \quad \Rightarrow \quad T U+U T+\text { b.c. }
$$

The matrix differential equation

$$
\dot{\boldsymbol{U}}(t)=A \boldsymbol{U}(t)+\boldsymbol{U}(t) B+\mathcal{F}(\boldsymbol{U}, t), \quad \boldsymbol{U}(0)=\boldsymbol{U}_{0}
$$

Computational strategies. Time stepping methods:
> Small scale: matrix-oriented IMEX methods, exponential integrators

* Large scale: In sequence:

Order reduction procedure (\Rightarrow POD-type)
Feasible handing of nonlinear term $\mathcal{F}(U, t)(\Rightarrow$ matrix DEIM $)$
Time stepping of reduced problem

The matrix differential equation

$$
\dot{\boldsymbol{U}}(t)=A \boldsymbol{U}(t)+\boldsymbol{U}(t) B+\mathcal{F}(\boldsymbol{U}, t), \quad \boldsymbol{U}(0)=\boldsymbol{U}_{0}
$$

Computational strategies. Time stepping methods:

- Small scale: matrix-oriented IMEX methods, exponential integrators
- Large scale: In sequence:

1. Order reduction procedure (\Rightarrow POD-type)
2. Feasible handling of nonlinear term $\mathcal{F}(\boldsymbol{U}, t)(\Rightarrow$ matrix DEIM $)$
3. Time stepping of reduced problem

The matrix differential equation

$$
\dot{\boldsymbol{U}}(t)=A \boldsymbol{U}(t)+\boldsymbol{U}(t) B+\mathcal{F}(\boldsymbol{U}, t), \quad \boldsymbol{U}(0)=\boldsymbol{U}_{0}
$$

Computational strategies. Time stepping methods:

- Small scale: matrix-oriented IMEX methods, exponential integrators
- Large scale: In sequence:

1. Order reduction procedure (\Rightarrow POD-type)
2. Feasible handling of nonlinear term $\mathcal{F}(\boldsymbol{U}, t)$ (\Rightarrow matrix DEIM)
3. Time stepping of reduced problem

Small scale time stepping

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{2}, t \in \mathcal{T}
$$

- Problem is stiff
- Use appropriate time discretizations
- Time stepping constraints
- Possibly long time period (e.g., for pattern detection), with occurrence of transient unstable phase
- Phenomenon sets in only if domain is well represented

$$
\dot{\boldsymbol{U}}(t)=A \boldsymbol{U}(t)+\boldsymbol{U}(t) B+\mathcal{F}(\boldsymbol{U}, t), \quad \boldsymbol{U}(0)=\boldsymbol{U}_{0}
$$

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\boldsymbol{u}_{n+1}-\boldsymbol{u}_{n}=h_{t}\left(\mathcal{A} \boldsymbol{u}_{n+1}+f\left(\boldsymbol{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} \mathcal{A}\right) \boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+h_{t} f\left(\boldsymbol{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(A U_{n+1}+U_{n+1} B\right)+h_{t} F\left(U_{n}\right)$,
so that

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\boldsymbol{u}_{n+1}-\boldsymbol{u}_{n}=h_{t}\left(\mathcal{A} \boldsymbol{u}_{n+1}+f\left(\boldsymbol{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} \mathcal{A}\right) \boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+h_{t} f\left(\boldsymbol{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(A U_{n+1}+U_{n+1} B\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} A\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} B\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1 .
$$

2. Second order SBDF, known as IMEX 2-SBDF method

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\boldsymbol{u}_{n+1}-\boldsymbol{u}_{n}=h_{t}\left(\mathcal{A} \boldsymbol{u}_{n+1}+f\left(\boldsymbol{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} \mathcal{A}\right) \boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+h_{t} f\left(\boldsymbol{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(A U_{n+1}+U_{n+1} B\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} A\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} B\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

2. Second order SBDF, known as IMEX 2-SBDF method

$$
3 \boldsymbol{u}_{n+2}-4 \boldsymbol{u}_{n+1}+\boldsymbol{u}_{n}=2 h_{t} \mathcal{A} \boldsymbol{u}_{n+2}+2 h_{t}\left(2 f\left(\boldsymbol{u}_{n+1}\right)-f\left(\boldsymbol{u}_{n}\right)\right), \quad n=0,1, \ldots, N_{t}
$$

Matrix-oriented form: for $n=0, \ldots, N_{t}-2$,

Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: $\boldsymbol{u}_{n+1}-\boldsymbol{u}_{n}=h_{t}\left(\mathcal{A} \boldsymbol{u}_{n+1}+f\left(\boldsymbol{u}_{n}\right)\right)$ so that

$$
\left(I-h_{t} \mathcal{A}\right) \boldsymbol{u}_{n+1}=\boldsymbol{u}_{n}+h_{t} f\left(\boldsymbol{u}_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: $U_{n+1}-U_{n}=h_{t}\left(A U_{n+1}+U_{n+1} B\right)+h_{t} F\left(U_{n}\right)$, so that

$$
\left(I-h_{t} A\right) \mathbf{U}_{n+1}+\mathbf{U}_{n+1}\left(-h_{t} B\right)=U_{n}+h_{t} F\left(U_{n}\right), \quad n=0, \ldots, N_{t}-1
$$

2. Second order SBDF, known as IMEX 2-SBDF method

$$
3 \boldsymbol{u}_{n+2}-4 \boldsymbol{u}_{n+1}+\boldsymbol{u}_{n}=2 h_{t} \mathcal{A} \boldsymbol{u}_{n+2}+2 h_{t}\left(2 f\left(\boldsymbol{u}_{n+1}\right)-f\left(\boldsymbol{u}_{n}\right)\right), \quad n=0,1, \ldots, N_{t}
$$

Matrix-oriented form: for $n=0, \ldots, N_{t}-2$,

$$
\left(3 I-2 h_{t} A\right) \mathbf{U}_{n+2}+\mathbf{U}_{n+2}\left(-2 h_{t} B\right)=4 U_{n+1}-U_{n}+2 h_{t}\left(2 F\left(U_{n+1}\right)-F\left(U_{n}\right)\right)
$$

Time stepping Matrix-oriented methods

Exponential integrator

Exponential first order Euler method:

$$
\boldsymbol{u}_{n+1}=e^{h_{t} \mathcal{A}} \boldsymbol{u}_{n}+h_{t} \varphi_{1}\left(h_{t} \mathcal{A}\right) f\left(\boldsymbol{u}_{n}\right)
$$

$e^{h_{t} \mathcal{A}}$: matrix exponential, $\varphi_{1}(z)=\left(e^{z}-1\right) / z$ first "phi" function That is,

$$
\boldsymbol{u}_{n+1}=e^{h_{t} \mathcal{A}} \boldsymbol{u}_{n}+h_{t} \boldsymbol{v}_{n}, \quad \text { where } \mathcal{A} \boldsymbol{v}_{n}=e^{h_{t} \mathcal{A}} f\left(\boldsymbol{u}_{n}\right)-f\left(\boldsymbol{u}_{n}\right) \quad n=0, \ldots, N_{t}-1
$$

Time stepping Matrix-oriented methods

Exponential integrator

Exponential first order Euler method:

$$
\boldsymbol{u}_{n+1}=e^{h_{t} \mathcal{A}} \boldsymbol{u}_{n}+h_{t} \varphi_{1}\left(h_{t} \mathcal{A}\right) f\left(\boldsymbol{u}_{n}\right)
$$

$e^{h_{t} \mathcal{A}}$: matrix exponential, $\varphi_{1}(z)=\left(e^{z}-1\right) / z$ first "phi" function That is,

$$
\boldsymbol{u}_{n+1}=e^{h_{t} \mathcal{A}} \boldsymbol{u}_{n}+h_{t} \boldsymbol{v}_{n}, \quad \text { where } \mathcal{A} \boldsymbol{v}_{n}=e^{h_{t} \mathcal{A}} f\left(\boldsymbol{u}_{n}\right)-f\left(\boldsymbol{u}_{n}\right) \quad n=0, \ldots, N_{t}-1
$$

Matrix-oriented form: since $e^{h_{t} \mathcal{A}} \boldsymbol{u}=\left(e^{h_{t} B^{\top}} \otimes e^{h_{t} A}\right) \boldsymbol{u}=\operatorname{vec}\left(e^{h_{t} A} \boldsymbol{U}^{h_{t} B}\right)$

1. Compute $E_{1}=e^{h_{t} A}, E_{2}=e^{h_{t} B^{\top}}$
2. For each n

Solve

$$
\begin{array}{rc}
\text { Solve } & A \mathbf{V}_{n}+\mathbf{V}_{n} B=E_{1} F\left(\boldsymbol{U}_{n}\right) E_{2}^{\top}-F\left(\boldsymbol{U}_{n}\right) \\
\text { Compute } & \boldsymbol{U}_{n+1}=E_{1} \boldsymbol{U}_{n} E_{2}^{\top}+h_{t} V_{n}
\end{array}
$$

Time stepping Matrix-oriented methods

Computational issues:

- Dimensions of A, B very modest
- A, B quasi-symmetric (non-symmetry due to bc's)
- A, B do not depend on time step
\& Matrix-oriented form all in spectral space (after eigenvector transformation)

Structural properties are preserved

Time stepping Matrix-oriented methods

Computational issues:

- Dimensions of A, B very modest
- A, B quasi-symmetric (non-symmetry due to bc's)
- A, B do not depend on time step
\& Matrix-oriented form all in spectral space (after eigenvector transformation)

Numerical properties:

> Structural properties are preserved

A numerical example of system of RD-PDEs

$$
\left\{\begin{array}{l}
u_{t}=\mathcal{L}_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\mathcal{L}_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

Model describing an electrodeposition process for metal growth $f_{1}(u, v)=\rho\left(A_{1}(1-v) u-A_{2} u^{3}-B(v-\alpha)\right)$ $\left.f_{2}(u, v)=\rho\left(C\left(1+k_{2} u\right)(1-v)[1-\gamma(1-v)]-D v\left(1+k_{3} u\right)(1+\gamma v)\right)\right)$

Turing pattern

Joint work with M.C. D'Autilia \& I. Sgura, Università di Lecce

A numerical example of system of RD-PDEs

$$
\left\{\begin{array}{l}
u_{t}=\mathcal{L}_{1}(u)+f_{1}(u, v), \\
\left.\left.v_{t}=\mathcal{L}_{2}(v)+f_{2}(u, v), \quad \text { with } \quad(x, y) \in \Omega \subset \mathbb{R}^{2}, \quad t \in\right] 0, T\right]
\end{array}\right.
$$

Model describing an electrodeposition process for metal growth $f_{1}(u, v)=\rho\left(A_{1}(1-v) u-A_{2} u^{3}-B(v-\alpha)\right)$ $\left.f_{2}(u, v)=\rho\left(C\left(1+k_{2} u\right)(1-v)[1-\gamma(1-v)]-D v\left(1+k_{3} u\right)(1+\gamma v)\right)\right)$

Turing pattern

Joint work with M.C. D'Autilia \& I. Sgura, Università di Lecce

Approaches to time discretization

$$
u_{t}=\mathcal{L}(u)+f(u, t), \quad u=u(x, y, t) \quad \text { with }(x, y) \in \Omega \subset \mathbb{R}^{d}, d=2,3, t \in \mathcal{T}
$$

- Time marching schemes: classical strategies stemming from ODEs Lead to

Sequence of (matrix) space problems at subsequent time steps

- All-at-once schemes: time discretization similar to space discretization (tensor basis methods)
Lead to
(Non)linear matrix equations

Space-Time discretizations via tensorized high order methods

- The heat equation:

$$
u_{t}+\mathcal{L}(u)=f, \quad u(0)=0, \quad f \in L_{2}\left(I, X^{\prime}\right)
$$

$\mathcal{L}: X \rightarrow X^{\prime}$ elliptic op. with coercive bilinear form a : $X \times X \rightarrow \mathbb{R}, X \equiv H_{0}^{1}(\Omega)$
Variational formulation:

$$
\text { find } u \in U: \quad b(u, v)=\langle f, v\rangle \quad \text { for all } v \in V
$$

where
trial: $U:=H_{(0)}^{1}\left(I ; X^{\prime}\right) \cap L_{2}(I ; X) \quad$ test: $V:=L_{2}(I ; X)$
$b(u, v):=\int_{0}^{T} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{T} a(u(t), v(t)) d t \quad\langle f, v\rangle:=\int_{0}^{T} \int_{\Omega} f(t, x) v(t, x) d x d t$

- The wave equation:

Variational formulation:

Space-Time discretizations via tensorized high order methods

- The heat equation:

$$
u_{t}+\mathcal{L}(u)=f, \quad u(0)=0, \quad f \in L_{2}\left(I, X^{\prime}\right)
$$

$\mathcal{L}: X \rightarrow X^{\prime}$ elliptic op. with coercive bilinear form a : $X \times X \rightarrow \mathbb{R}, X \equiv H_{0}^{1}(\Omega)$
Variational formulation:

$$
\text { find } u \in U: \quad b(u, v)=\langle f, v\rangle \quad \text { for all } v \in V
$$

where

$$
\begin{aligned}
& \text { trial: } U:=H_{(0)}^{1}\left(I ; X^{\prime}\right) \cap L_{2}(I ; X) \quad \text { test: } V:=L_{2}(I ; X) \\
& b(u, v):=\int_{0}^{T} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{T} a(u(t), v(t)) d t \quad\langle f, v\rangle:=\int_{0}^{T} \int_{\Omega} f(t, x) v(t, x) d x d t
\end{aligned}
$$

- The wave equation:

$$
u_{t t}+\mathcal{L}(u)=f, \quad u(0)=0, u_{t}(0)=0
$$

Variational formulation:

$$
\text { find } u \in U: \quad b(u, v)=\langle f, v\rangle \quad \text { for all } v \in V
$$

$$
\text { trial: } U:=L_{2}(I ; H) \quad \text { test: } V:=\left\{v \in L_{2}(I ; H): v_{t t}+\mathcal{L}(v) \in L_{2}(I ; H), v(T)=v_{t}(T)=0\right\}
$$

$$
b(u, v):=\left(u, v_{t t}+\mathcal{L}(v)\right)_{L_{2}(1 ; H)}
$$

J. Henning, D. Palitta, V. S., and K. Urban, 2020, 2022.

Wave equation. Petrov-Galerkin discretization

For trial space $U_{\delta} \subset U$, and test space $V_{\delta} \subset V$,

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta} \subset V
$$

- Finite elements in time with, e.g., piecewise quadratic splines
- Conformal finite element space, e.g., piecewise quadratic B-splines

Test space: as the tensor product space ${ }^{1}$

$V_{\delta}:=R_{\Delta t} \otimes Z_{h}=\operatorname{span}\left\{\varphi_{\nu}:=e^{k} Q \phi_{i}: k=1, \ldots, N_{t}, i=1, \ldots, N_{h}, \nu=(k, i)\right\}$
Trial space: apply the adjoint operator B^{*} to each test basis function, i.e., for $\mu=(\ell, j)$ and $\mathcal{L}=-\Delta$
e., (inf-sup-optimal space)

Wave equation. Petrov-Galerkin discretization

For trial space $U_{\delta} \subset U$, and test space $V_{\delta} \subset V$,

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta} \subset V
$$

- Finite elements in time with, e.g., piecewise quadratic splines
- Conformal finite element space, e.g., piecewise quadratic B-splines

Test space: as the tensor product space ${ }^{1}$

$$
V_{\delta}:=R_{\Delta t} \otimes Z_{h}=\operatorname{span}\left\{\varphi_{\nu}:=\varrho^{k} \otimes \phi_{i}: k=1, \ldots, N_{t}, i=1, \ldots, N_{h}, \nu=(k, i)\right\}
$$

Trial space: apply the adjoint operator B^{*} to each test basis function, i.e., for $\mu=(\ell, j)$ and $\mathcal{L}=-\Delta$

$$
\psi_{\mu}:=B^{*}\left(\varphi_{\mu}\right)=B^{*}\left(\varrho^{\ell} \otimes \phi_{j}\right)=\left(\partial_{t t}+\mathcal{L}\right)\left(\varrho^{\ell} \otimes \phi_{j}\right)=\varrho^{\ell} \otimes \phi_{j}+\varrho^{\ell} \otimes \mathcal{L}\left(\phi_{j}\right)
$$

i.e., (inf-sup-optimal space)

$$
U_{\delta}:=B^{*}\left(V_{\delta}\right)=\operatorname{span}\left\{\psi_{\mu}: \mu=1, \ldots, \mathcal{N}_{\delta}\right\}
$$

[^0]
The linear system. The stiffness matrix

For spaces induced by :
trial: $\left\{\psi_{\mu}:=\sigma^{\ell} \otimes \xi_{j}: \mu=1, \ldots, \mathcal{N}_{\delta}\right\}$
test: $\left\{\varphi_{\nu}=\varrho^{k} \otimes \phi_{i}: \nu=1, \ldots, \mathcal{N}_{\delta}\right\}$
In the inf-sup optimal case $\psi_{\mu}=B^{*}\left(\varphi_{\mu}\right)$, we get the representation

$$
\begin{aligned}
{\left[\mathbb{B}_{\delta}\right]_{(\ell, j),(k, i)}=} & \left(\ddot{\varrho}^{\ell} \otimes \phi_{j}+\varrho^{\ell} \otimes \mathcal{L}\left(\phi_{j}\right), \varrho^{k} \otimes \phi_{i}+\varrho^{k} \otimes \mathcal{L}\left(\phi_{i}\right)\right)_{\mathcal{H}} \\
= & \left(\ddot{\varrho}^{\ell}, \ddot{\varrho}^{k}\right)_{L_{2}(I)}\left(\phi_{j}, \phi_{i}\right)_{L_{2}(\Omega)}+\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)}\left(\mathcal{L}\left(\phi_{j}\right), \mathcal{L}\left(\phi_{i}\right)\right)_{L_{2}(\Omega)} \\
& +\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)}\left(\phi_{j}, \mathcal{L}\left(\phi_{i}\right)\right)_{L_{2}(\Omega)}+\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)}\left(\mathcal{L}\left(\phi_{j}\right), \phi_{i}\right)_{L_{2}(\Omega)}
\end{aligned}
$$

so that

$$
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { for } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right)
$$

Note: \mathbb{B}_{δ} is symmetric and positive definite for $\mathcal{L}=-\Delta$

Solving $\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta}$ yields the expansion coefficients of $u_{\delta} \in \mathbb{U}_{\delta}$

The stiffness matrix

$$
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { with } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right)
$$

\mathbb{B}_{δ} is sum of tensor products involving some ill-conditioned components
$\kappa\left(\mathbb{B}_{\delta}\right)$ scales like a stiffness matrix of a 4 th order problem
\Rightarrow ill-conditioned linear system
\Rightarrow Matrices are generally dense

The stiffness matrix

$$
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { with } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right)
$$

\mathbb{B}_{δ} is sum of tensor products involving some ill-conditioned components

$$
\kappa\left(\mathbb{B}_{\delta}\right) \text { scales like a stiffness matrix of a } 4 \text { th order problem }
$$

\Rightarrow ill-conditioned linear system
\Rightarrow Matrices are generally dense

Iterative solver with structure-aware preconditioning

In particular, \boldsymbol{Q}_{h} and ${ }^{2} \boldsymbol{N}_{h} \boldsymbol{M}_{h}^{-1} \boldsymbol{N}_{h}^{\top}$ are spectrally equivalent, i.e.

$$
\gamma^{2} z_{h}^{\top} Q_{h} z_{h} \leq z_{h}^{\top} N_{h} M_{h}^{-1} N_{h}^{\top} z_{h} \leq \Gamma^{2} z_{h}^{\top} Q_{h} z_{h}
$$

The stiffness matrix

$$
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { with } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right)
$$

\mathbb{B}_{δ} is sum of tensor products involving some ill-conditioned components
$\kappa\left(\mathbb{B}_{\delta}\right)$ scales like a stiffness matrix of a 4 th order problem
\Rightarrow ill-conditioned linear system
\Rightarrow Matrices are generally dense

Iterative solver with structure-aware preconditioning

In particular, \boldsymbol{Q}_{h} and $^{2} \boldsymbol{N}_{h} \boldsymbol{M}_{h}^{-1} \boldsymbol{N}_{h}^{\top}$ are spectrally equivalent, i.e.,

$$
\gamma^{2} \boldsymbol{z}_{h}^{\top} \boldsymbol{Q}_{h} \boldsymbol{z}_{h} \leq \boldsymbol{z}_{h}^{\top} \boldsymbol{N}_{h} \boldsymbol{M}_{h}^{-1} \boldsymbol{N}_{h}^{\top} \boldsymbol{z}_{h} \leq \Gamma^{2} \boldsymbol{z}_{h}^{\top} \boldsymbol{Q}_{h} \boldsymbol{z}_{h} \quad \text { for all } \boldsymbol{z}_{h} \in \mathbb{R}^{N_{h}} .
$$

[^1]
Preconditioned Conjugate Gradients method

$$
\begin{gathered}
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { with } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right) \\
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \\
\mathbb{P}^{-1} \mathbb{B} \boldsymbol{u}_{\delta}=\mathbb{P}^{-1} \boldsymbol{g}_{\delta}
\end{gathered}
$$

Preconditioners

- Sylvester onerator preconditioner

$$
\mathbb{P}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}
$$

- Spectrally equivalent preconditioner

Preconditioned Conjugate Gradients method

$$
\begin{gathered}
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { with } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right) \\
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \\
\mathbb{P}^{-1} \mathbb{B} \boldsymbol{u}_{\delta}=\mathbb{P}^{-1} \boldsymbol{g}_{\delta}
\end{gathered}
$$

Preconditioners

- Sylvester operator preconditioner

$$
\mathbb{P}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}
$$

- Spectrally equivalent preconditioner

$$
\mathbb{P}=\mathbb{K}_{\delta}^{\top} \mathbf{M}_{\delta}^{-1} \mathbb{K}_{\delta} \quad \mathbb{K}_{\delta}=\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{N}_{h}, \quad \mathbb{M}_{\delta}=\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{M}_{h}
$$

Preconditioned Conjugate Gradients method

$$
\begin{gathered}
\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}, \text { with } \psi_{\mu}=B^{*}\left(\varphi_{\mu}\right) \\
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \\
\mathbb{P}^{-1} \mathbb{B} \boldsymbol{u}_{\delta}=\mathbb{P}^{-1} \boldsymbol{g}_{\delta}
\end{gathered}
$$

Preconditioners

- Sylvester operator preconditioner

$$
\mathbb{P}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}
$$

- Spectrally equivalent preconditioner

$$
\mathbb{P}=\mathbb{K}_{\delta}^{\top} \mathbf{M}_{\delta}^{-1} \mathbb{K}_{\delta} \quad \mathbb{K}_{\delta}=\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{N}_{h}, \quad \mathbb{M}_{\delta}=\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{M}_{h}
$$

Matrix-oriented formulation of PCG:

$$
\mathcal{A}(\boldsymbol{U})=\boldsymbol{G} \quad \text { with } \quad \mathcal{A}(\boldsymbol{U})=\boldsymbol{M}_{h} \boldsymbol{U} \boldsymbol{Q}_{\Delta t}^{\top}+\boldsymbol{N}_{h}^{\top} \boldsymbol{U} \boldsymbol{N}_{\Delta t}^{\top}+\boldsymbol{N}_{h} \boldsymbol{U} \boldsymbol{N}_{\Delta t}+\boldsymbol{Q}_{h} \boldsymbol{U} \boldsymbol{M}_{\Delta t}
$$

An example

$$
u_{t t}=c^{2} \Delta u, \quad u(T)=0, u(1)=u_{1} \quad \Omega=(0,1)^{3}, T=1,
$$

c wave speed, $u_{0}(r)=\mathbb{1}_{r<\sqrt{2} / 5}(\mathrm{wo} / \mathrm{lg}$, polar coordinates $)$

$$
u \text { is not continuous in } \bar{I} \times \bar{\Omega}
$$

- Space-time approach with PCG (unconditionally stable discr)
- Crank-Nicolson (with standard PCG at each timestep)

An example

$$
u_{t t}=c^{2} \Delta u, \quad u(T)=0, u(1)=u_{1} \quad \Omega=(0,1)^{3}, T=1,
$$

c wave speed, $u_{0}(r)=\mathbb{1}_{r<\sqrt{2} / 5}$ (wo/lg, polar coordinates)

$$
u \text { is not continuous in } \bar{I} \times \bar{\Omega}
$$

Comparing:

- Space-time approach with PCG (unconditionally stable discr)
- Crank-Nicolson (with standard PCG at each timestep)

Numerical experiments

Conclusions and outlook

- Matrix-oriented formulations
- make the use of demanding discretizations possible
- provide new perspectives also for NLA
- Multivariable (tensor) versions under consideration

REFERENCES

- Maria Chiara D'Autilia, Ivonne Sgura and V. S.
Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications Computers and Mathematics with Applications, v. 79 (1), 2020, pages 2067-2085.

Julian Henning, Davide Palitta, V. S. and Karsten U'rban
Matrix oriented reduction of space-time Petrov-Galerkin variational problems.
Proceedings ENUMATH 2019
Julian Henhing, Davide Palitta, V. S. and Karsten Urban.
A Very Weak Space-Time Variational Formulation for the Wave Equation: Analysis and Efficient
Numerical Solution
ESAIM: M2AN, 56(4) 2022.
V.S., Computational methods for linear matrix equations. SIAM Rev, 2016.

Conclusions and outlook

- Matrix-oriented formulations
- make the use of demanding discretizations possible
- provide new perspectives also for NLA
- Multivariable (tensor) versions under consideration

REFERENCES

- Maria Chiara D'Autilia, Ivonne Sgura and V. S.

Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications Computers and Mathematics with Applications, v. 79 (1), 2020, pages 2067-2085.

- Julian Henning, Davide Palitta, V. S. and Karsten Urban.

Matrix oriented reduction of space-time Petrov-Galerkin variational problems.
Proceedings ENUMATH 2019

- Julian Henning, Davide Palitta, V. S. and Karsten Urban.

A Very Weak Space-Time Variational Formulation for the Wave Equation: Analysis and Efficient Numerical Solution
ESAIM: M2AN, 56(4) 2022.

- V.S., Computational methods for linear matrix equations. SIAM Rev, 2016.

[^0]: ${ }^{1} R_{\Delta t}:=\operatorname{span}\left\{\varrho^{1}, \ldots, \varrho^{N_{t}}\right\} \subset H_{\{T\}}^{2}(I), Z_{h}:=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N_{h}}\right\} \subset H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$

[^1]: ${ }^{2}$ with some abuse of notation for spaces...

