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The Problem

Axr =0b

A € R™ ™ nonsymmetric (in general, already preconditioned)

Derive sufficient conditions for non-stagnation of GMRES-type solvers

That is, whether we can predict that




@©
2
S
9]
0}
—
Y—
(o}
€
S
o
c

| |
15 20
number of iterations

does not occur! (31 x 31 matrix)




Motivation

Complete stagnation is a very unfortunate but rare event

Other reasons for studying this problem:




Motivation

Complete stagnation is a very unfortunate but rare event
Other reasons for studying this problem:

Let x; be an approximate solution, and r, = b — Axy..
e Partial stagnation phases occur more frequently (staircase slope)

e Bounds of the type
el <clfrell, 0<e<1

important whenever ¢ independent of problem parameters

=> convergence behavior is not influenced by other model

components: 75| < cF|rol|

= Crucial to design preconditioning techniques




Elman bound (PhD thesis, 1982)
Let H = (A+ AT)/2

If H is positive definite (i.e. Anin(H) > 0), then

1
A?nln(H) ’
< (1= 220 i< frcal

k
2

A?nin H) 2
frul < (1= 228020 ol




Non-Stagnation and Parameter independence

)\?ninH %
< (1= 2280

If Amin(H ), ||A|| independent of parameters (viscosity, meshsize, etc.):

Number of iterations to converge is independent of parameters

e Bound per se is not sharp

e \Very much used in certain contexts

(e.g. Domain Decomposition methods, cf. Toselli & Widlund 2005)




Related and unrelated bounds

After one iteration of a minimal residual method:

rall = J1 = o Aro®
TAro ol

...true stagnation is very unlikely !




Related and unrelated bounds

After one iteration of a minimal residual method:
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...true stagnation is very unlikely !

e Characterization of matrices which lead to complete stagnation

(Zavorin etal. 2003)

e Some improvements over this bound for diag.ble/nondiag.ble

matrices

(Eisenstat etal. '83, Greenbaum '97, Saad '03, Liesen '00, Freund '90, ...)

e Different bounds, using F(A) C C*
(Eiermann & Ernst '01, Greenbaum '97, Starke '97)

e Additional results for A normal (s.t. AAT = AT A)




The new non-stagnation condition

Grcar tr'89:
Let g, be polynomial with g (0) = 0. If 3(qx(A) + gx(A4)") > 0 then

0 in : oy T
Il < (1= 12 ) ol O = A 064 + 01 (4)7)

Finding such a g is not simple!




The new non-stagnation condition

Grcar tr'89:
Let g, be polynomial with g (0) = 0. If 3(qx(A) + gx(A4)") > 0 then

9r2nin : R ) 1 T
Il < (1= 12 ) ol O = A 064 + 01 (4)7)

Finding such a g is not simple!

We reverse the problem:

We fix qi(t) = t*, k = 2,4 and determine conditions on A such that
Grcar's result can be applied
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Sufficient condition

For q(t) = tF, k = 2:

If A is such that Grcar's result holds, then GMRES cannot stagnate for
more than £k — 1 = 1 consecutive iterations

(Similar for k = 4)

Note: Also relevant for restarted GMRES

DEF. M is positive definite if (M + M7T) > 0

Restatement of the problem:

Find conditions on A so that qa(A) = A? is positive definite




The new conditions

Let H= (A + AT), S

1. If H is nonsingular, then A? is positive definite if and only if

ISH™ | <1

2. If S is nonsingular, then A? is negative definite if and only if

IHS 1 < 1




The new conditions

1. If H is nonsingular, then A? is positive definite if and only if
ISH™ | < 1
2. If S is nonsingular, then A? is negative definite if and only if

IHS 1 < 1

9r2nin : 1
frall < (1= 22882) roll - G = Auin (5 (42 + (4)7))> 0

The same relation holds at every other iteration




A simple Sufficient condition

H “dominates’ S"

If min; [A\;(H)| > max; |[\;(S)], then A? is positive definite

(A corresponding result for A2 negative definite)




The k = 4 case

), S =1(A—AT).

1
2

1. If H? + S? is nonsingular, then A% is positive definite if and only if
I(HS + SH)(H* + S*)7'| < 1
2. If HS 4+ SH is nonsingular, then A% is negative definite if and
only if
|(H? +S*)(HS + SH) || <1
* One could continue with higher powers, but ....

x There may be other polynomials ¢x () such that Grcar's result

applies




Some Examples

FD discretization of:

L(u) = — (g, o, — (BUay)zy + YUz, + Oz, — Nu

size(A) =1600. 1 = 100.

Q 5} Y Amin (H)
exp(riz2) —1 -0.04719

1 ~1/(1z1 + 10022) -0.04775
1 1/10(x1 — z2) -0.04772
1 1/10(x1 + z2) -0.04772
1 0.2 -0.04781




Navier-Stokes problem. Flow over a backward facing step

IFISS Package (Elman, Ramage, Silvester)

Oseen Problem. Uniform grid, Q1-P0O elements, ' nonsymmetric

Augmentation block diagonal preconditioning:

F BT F+BTC-'B
B —jC C

Spectrum of AP ~! tends to cluster around A = 1, A = —1 (Cao, 2008)




Spectrum and condition

n =418, m = 176, |[SH~1| = 0.99856< 1
n = 1538, m = 704, ||[SH~L| = 0.99568< 1




Stokes Problem. Channel domain

IFISS Package (Elman, Ramage, Silvester)

uniform grid, Q1-P0O elements, M symmetric

Nonsymmetric Preconditioning (cf. Elman, Silvester & Wathen '05):

M Bt M BT .
P = , G~BM B
B G

Y

Spectrum of AP~! tends to cluster around A =1, —1




Spectrum and condition
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A(H) = [~1.97, 1.03]

n=162,m =64, G=BM B |SH=|| = 0.3218< 1
n=578m=256 G=BM'B  ||SH™!| =0.6399< 1




Symmetric Saddle-Point type Problem

Nonsymmetric version (cf. survey: Benzi, Golub & Liesen '05):

ul BT
—-B 0

Spectrum of A_ isin CT, but 2(A_ + .AL)>0




Spectrum and condition

p=1  A(H)=10,1]

n=1272,m = 816, ||(HS + SH)(H?* + S%)~!|| = 0.7856< 1




Conclusions

e New conditions for non-stagnation:

Useful to establish parameter independence

e Possibility to extend the result
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