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Matrix rational function approximation problem

Determine x,,, € IC,,, that approximates the solution x of
U, (A)z =2,(A)v

A sym. negative semidef. ICr approx. space, dim(K,,)=m
v, ®, polynomials of degree v, u resp.
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Motivation: Approximation to the exponential operator

exp(A)v ~ (¥, (A) '@, (A)w

Other functions: (T, (\)" 1@, (A) =~ AZ,cos(N),...




Approximation to the exponential operator

Used in large range of applications
(e.g. within ODEs and time-dependent PDEs)

exp(A)v ~ (U, (A) '@, (A)w

Polynomial approximation, v = 0

Pade (rational f.) approximation, e.g., u = v
Chebyshev (rational f.) approximation, = v
RD (rational f.) approximation

Focus: Large matrix dimension




Approximation using Krylov subspace

K = Km(A,v) =span{v, Av, ..., A" 1}

Vin  s.t. range(Vy,) = K(A,v), and V2V, =1
Arnoldi relation

Avm — VmHm + hm—kl,mvm—l—le;@

A common approach

exp(A)v = V,,, exp(H,, )er, |v]| =1




Approximation of exp(A)v in Krylov subspace. |

Typical convergence bounds (Hochbruck & Lubich '97)

| exp(A)v — Vi, exp(Hp, e ||

| exp(A)v — Vi, exp(Hp, e ||

where o(A) C [—4p, 0]
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see also Druskin & Knizhnerman '89, Stewart & Leyk '96

Predict superlinear convergence




Approximation of exp(A)v in Krylov subspace. |l

Typical a-posteriori estimate (see, e.g., Saad '92)

| exp(A)v — Vi exp(Hp )er|| = O(hpm+1.mle, exp(Hp)eil)

Note: for Az(t) +2'(t) =0, z(0) = v

homt1,m €, €xp(tHm )er| = || Az (t) 4 20, (1)

plays role of residual norm
(Druskin & Greenbaum & Knizhnerman '98)




Exploring Krylov subspace approximation

exp(A)v = V,,, exp(H,, )er, |v]| =1

b, (A . .
exp(A) =~ T E)\; Rational function approx

e Increase our understanding of approximation in IC,,, (A4, v)

e Analyze role of “residual”  hut1.mler, exp(Hm)el

e Set up the stage for acceleration procedures




Projection of Rational functions onto Krylov subspaces

Basic fact: (R, = ®,/¥,)

| exp(A)v — Vi, exp(Hp e || <

lexp(A)v = Ry (A)v]| + [[Ru(A)v = Vi Ry (Hin e |
HVin (R (Hm)er — exp(Hm)er) ||

Focus: R, Padé and Chebyshev approximation
(W, (A) positive definite)




Projection onto Krylov subspace

z, = (U, (A) '@, (A)v < 1z, solves U, (A)x

Range(Vi,) = Kin(4,v). Galerkin approximation:

Solve V W, (A)V,y=V_ ®,(A)v,

Minimization property:

. B _ G
CUGI??:?A,U) ||x* xH\I/V(A) ||x* me\Ify(A)




Linear bounds for convergence rate

Using Partial Fraction expansion:

T, = (U, (A) 71D, (A),v = v + Z (A — &)

Convergence bound:  o¢(A) C [a, F]
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Galerkin approximation

10*

10"

W (A)—norm of error
W (A)—norm of error

dimension of Krylov subspace dimension of Krylov subspace

A = diag(log(linspace(0.2,0.99,100))), v=1

Left: Pade and upper bound for v = 7,11
Right: Chebyshev and upper bounds for v = 7, 14
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Krylov approximation

merlri — Vm<qj1/<Hm))_1q)y<Hm)€1

meffb is a term-wise Galerkin projection: (van der Vorst, '87)




A-posteriori estimate and residual

“toxV, | e + ZTj(Hm — §jI)_1el
j=1

Defining rk = ijfr%) (r%) single residuals) we have
1=1
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Comparison with Galerkin approximation

If m > v, then

G
v =yl <y Ny ) me—viiomll, v =07 1.m)

)
|6le<2 b <k,
i1 j

Tl(cj)l residual of system (A — &;1)x = v after k — 1 iterations

7; partial fraction coeff’s

Omin () smallest singular value




* Similar convergence estimates as for Galerkin

Relation to convergence of systems (A —¢&;)x =v,j=1,...,v
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dimension m of Krylov subspace

(Pade, v = 7)




One more example

Bound for Chebyshev v=14

HL bound

norm of error
=
o

=
o .
o

norm of error

| | | | |
0 15 20 25 30
dimension of Krylov subspace

A € RI0X1001 " dizgonal, uniform random distr. in [—40, 0]




Conclusions and Outlook

1. Convergence of (A —¢&;1)x = v plays a role

2. Preconditioning strategies

3. Generalization to non-Hermitian case
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