

Analysis of projection-type methods for approximating the matrix exponential operator

V. Simoncini

Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it

Joint work with Luciano Lopez, Bari

Matrix rational function approximation problem

Determine $x_m \in \mathcal{K}_m$ that approximates the solution x of

$$\Psi_{\nu}(A)x = \Phi_{\mu}(A)v$$

A sym. negative semidef. \mathcal{K}_m approx. space, $\dim(\mathcal{K}_m)=m$

 Ψ_{ν}, Φ_{μ} polynomials of degree ν, μ resp.

Motivation: Approximation to the exponential operator

$$\exp(A)v \approx (\Psi_{\nu}(A))^{-1}\Phi_{\mu}(A)v$$

Other functions: $(\Psi_{\nu}(\lambda))^{-1}\Phi_{\mu}(\lambda) \approx \lambda^{\frac{1}{2}}, \cos(\lambda), \dots$

Approximation to the exponential operator

Used in large range of applications (e.g. within ODEs and time-dependent PDEs)

$$\exp(A)v \approx (\Psi_{\nu}(A))^{-1}\Phi_{\mu}(A)v$$

- \bullet Polynomial approximation, $\nu=0$
- Padè (rational f.) approximation, e.g., $\mu = \nu$
- Chebyshev (rational f.) approximation, $\mu = \nu$
- RD (rational f.) approximation
- . . .

Focus: Large matrix dimension

Approximation using Krylov subspace

$$\mathcal{K}_m \equiv \mathcal{K}_m(A, v) = \operatorname{span}\{v, Av, \dots, A^{m-1}v\}$$

$$V_m$$
 s.t. range $(V_m) = \mathcal{K}_m(A,v)$, and $V_m^*V_m = I$

Arnoldi relation

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^*$$

A common approach

$$\exp(A)v \approx V_m \exp(H_m)e_1, \qquad ||v|| = 1$$

Approximation of $\exp(A)v$ in Krylov subspace. I

Typical convergence bounds (Hochbruck & Lubich '97)

$$\|\exp(A)v - V_m \exp(H_m)e_1\| \le 10e^{-m^2/(5\rho)}, \quad \sqrt{4\rho} \le m \le 2\rho,$$

 $\|\exp(A)v - V_m \exp(H_m)e_1\| \le \frac{10}{\rho}e^{-\rho}\left(\frac{e\rho}{m}\right)^m, \quad m \ge 2\rho$

where $\sigma(A) \subseteq [-4\rho, 0]$

see also Druskin & Knizhnerman '89, Stewart & Leyk '96

Predict superlinear convergence

Approximation of $\exp(A)v$ in Krylov subspace. II

Typical a-posteriori estimate (see, e.g., Saad '92)

$$\|\exp(A)v - V_m \exp(H_m)e_1\| \approx O(h_{m+1,m}|e_m^* \exp(H_m)e_1|)$$

Note: for
$$Ax(t) + x'(t) = 0$$
, $x(0) = v$

$$|h_{m+1,m}|e_m^* \exp(tH_m)e_1| = ||Ax_m(t) + x_m'(t)||$$

plays role of residual norm (Druskin & Greenbaum & Knizhnerman '98)

Exploring Krylov subspace approximation

$$\exp(A)v \approx V_m \exp(H_m)e_1, \qquad ||v|| = 1$$

$$\exp(\lambda) pprox rac{\Phi_{
u}(\lambda)}{\Psi_{
u}(\lambda)}$$
 Rational function approx

- Increase our understanding of approximation in $\mathcal{K}_m(A,v)$
- Analyze role of "residual" $h_{m+1,m}|e_m^*\exp(H_m)e_1|$
- Set up the stage for acceleration procedures

Projection of Rational functions onto Krylov subspaces

Basic fact: $(\mathcal{R}_{\nu} = \Phi_{\nu}/\Psi_{\nu})$

$$\| \exp(A)v - V_m \exp(H_m)e_1 \| \le$$

$$\| \exp(A)v - \mathcal{R}_{\nu}(A)v \| + \| \mathcal{R}_{\nu}(A)v - V_m \mathcal{R}_{\nu}(H_m)e_1 \|$$

$$+ \| V_m \left(\mathcal{R}_{\nu}(H_m)e_1 - \exp(H_m)e_1 \right) \|.$$

Focus: \mathcal{R}_{ν} Padè and Chebyshev approximation $(\Psi_{\nu}(A)$ positive definite)

Projection onto Krylov subspace

$$x_{\star} = (\Psi_{\nu}(A))^{-1} \Phi_{\nu}(A) v \quad \Leftrightarrow \quad x_{\star} \text{ solves} \quad \Psi_{\nu}(A) x = \Phi_{\nu}(A) v$$

Range $(V_m) = \mathcal{K}_m(A, v)$. Galerkin approximation:

Solve
$$V_m^* \Psi_{\nu}(A) V_m y = V_m^* \Phi_{\nu}(A) v, \qquad x_m^G = V_m y_m^G$$

Minimization property:

$$\min_{x \in K_m(A,v)} \|x_{\star} - x\|_{\Psi_{\nu}(A)} = \|x_{\star} - x_m^G\|_{\Psi_{\nu}(A)}$$

Linear bounds for convergence rate

Using Partial Fraction expansion:

$$\frac{\Phi_{\nu}(\lambda)}{\Psi_{\nu}(\lambda)} = \tau_0 + \sum_{j=1}^{\nu} \frac{\tau_j}{\lambda - \xi_j}$$

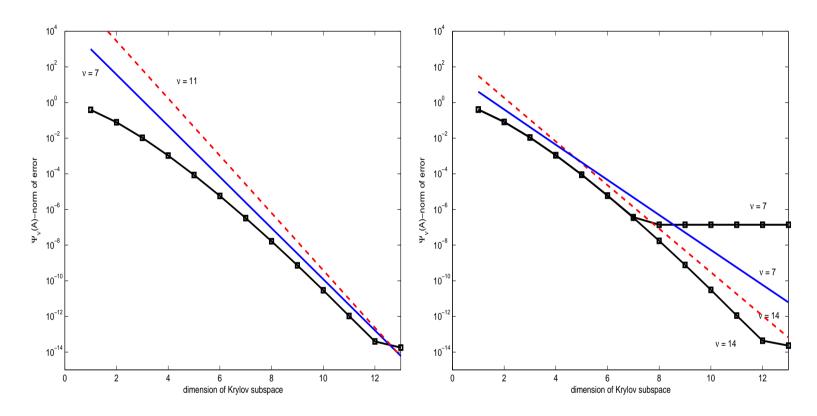
$$x_{\star} = (\Psi_{\nu}(A))^{-1} \Phi_{\nu}(A)_{\nu} v = \tau_{0} v + \sum_{j=1}^{\nu} \tau_{j} (A - \xi_{j} I)^{-1} v$$

Convergence bound: $\sigma(A) \subseteq [\alpha, \beta]$

$$\frac{\|x_{\star} - x_m^G\|_{\Psi_{\nu}(A)}}{\|x_{\star} - x_0^G\|_{\Psi_{\nu}(A)}} \le 2 \sum_{j=1}^{\nu} \left(\max_{\lambda \in [\alpha, \beta]} \frac{|\tau_j \Psi_{\nu}(\lambda)|}{|\Phi_{\nu}(\lambda)| |\lambda - \xi_j|} \right) \frac{1}{\rho_j^m + 1/\rho_j^m}$$

$$\rho_j = \rho_j(\alpha, \beta, \xi_j)$$

Galerkin approximation



A = diag(log(linspace(0.2,0.99,100))), v=1

Left: Padè and upper bound for $\nu=7,11$

Right: Chebyshev and upper bounds for $\nu=7,14$

Krylov approximation

$$x_{\star} = (\Psi_{\nu}(A))^{-1} \Phi_{\nu}(A) v \qquad \approx \quad V_{m} y_{m}^{K} = V_{m} (\Psi_{\nu}(H_{m}))^{-1} \Phi_{\nu}(H_{m}) e_{1}$$

 $V_m y_m^K$ is a term-wise Galerkin projection: (van der Vorst, '87)

$$x_{\star} = \tau_{0}v + \sum_{j=1}^{\nu} \tau_{j} (A - \xi_{j}I)^{-1}v \approx \tau_{0}v + \sum_{j=1}^{\nu} \tau_{j} V_{m} y_{m}^{(j)}$$

$$= V_{m} \left(\tau_{0}e_{1} + \sum_{j=1}^{\nu} \tau_{j} (H_{m} - \xi_{j}I)^{-1}e_{1} \right)$$

$$= V_{m} (\Psi_{\nu}(H_{m}))^{-1} \Phi_{\nu}(H_{m})e_{1} \equiv V_{m} y_{m}^{K}$$

A-posteriori estimate and residual

$$x_{\star} = \tau_0 v + \sum_{j=1}^{\nu} \tau_j (A - \xi_j I)^{-1} v \approx V_m \left(\tau_0 e_1 + \sum_{j=1}^{\nu} \tau_j (H_m - \xi_j I)^{-1} e_1 \right)$$

Defining
$$r_m^K := \sum_{j=1}^{
u} au_j r_m^{(j)}$$
 $(r_m^{(j)} ext{ single residuals})$ we have

$$||r_m^K|| = h_{m+1,m} |e_m^* y_m^K|$$

Comparison with Galerkin approximation

If $m > \nu$, then

$$||y_m^G - y_m^K|| \le \gamma ||(y_m^K)_{m-\nu+1:m}||, \qquad \gamma = O(h_{m+1,m}^2)$$

where

$$|e_k^* y_m^K| \le \sum_{j=1}^{\nu} \frac{|\tau_j|}{\sigma_{\min}(H_m - \xi_j I)} \|r_{k-1}^{(j)}\|, \qquad 1 < k \le m,$$

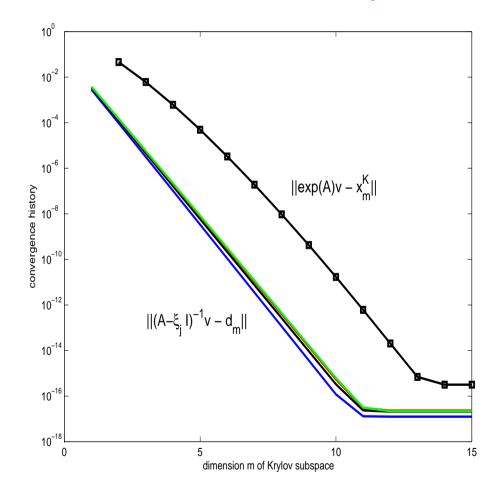
 $r_{k-1}^{(j)}$ residual of system $(A - \xi_j I)x = v$ after k-1 iterations

 au_j partial fraction coeff's

 $\sigma_{\min}(\cdot)$ smallest singular value

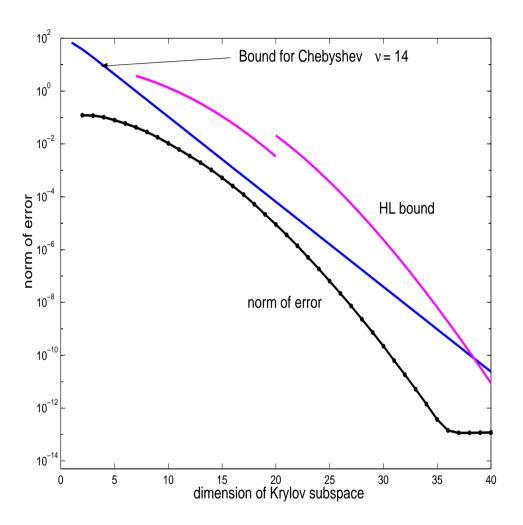
* Similar convergence estimates as for Galerkin

Relation to convergence of systems $(A - \xi_j I)x = v, j = 1, \dots, \nu$



(Padè, $\nu = 7$)

One more example



 $A \in \mathbb{R}^{1001 \times 1001}$, diagonal, uniform random distr. in [-40,0]

Conclusions and Outlook

- 1. Convergence of $(A \xi_j I)x = v$ plays a role
- 2. Preconditioning strategies
- 3. Generalization to non-Hermitian case

Paper available at: www.dm.unibo.it/~simoncin

e-mail: valeria@dm.unibo.it