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Algebraic computations. I

Old and new challenges in Scientific Computing

▶ Solution of block-structured/preconditioned large linear systems,

Ax = b n × n

▶ Eigensolver requiring spectral transformations

Ax = λMx , ∥x∥ = 1,

▶ Large scale matrix function evaluations

x = exp(A)v , x =
√
Av , etc .

▶ Matrix and Tensor equations

(A1 ⊗ B1 ⊗ C1 + . . .+ Aℓ ⊗ Bℓ ⊗ Cℓ)x = b
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Algebraic computations. II

Old and new frameworks in Scientific Computing

▶ Many-dimensional problems (high-dim tensorized form)

- Algebraic formulations
- Memory constraints (for data and solution)

▶ Finite Precision computations

- Rigorous round-off error analysis vs flexibility
- Accuracy tradeoffs

▶ Mixed-precision computations

- High performance machines
- Computation lightnening
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The framework - iterative methods

▶ Inexact operator v → Aϵ(v)

where Aϵ → A for ϵ→ 0 (ϵ may be tuned)

(e.g., Preconditioning, Schur complements, spectral transformations, etc.)

▶ Truncated computations:

Inner products, matrix and vector sums

Classical nightmare

Accuracy and optimality properties are lost

Goal: Achieve approximation xm to x within a fixed tolerance, by using Aϵ (and not A),
with variable ϵ
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The important ingredients

▶ Inexact operator v → Aϵ(v):

y = Aϵ(v) = Av + w , ∥w∥ = ϵ(v)

▶ Incremental approximation: growing subspace, with basis Vm = [v1, . . . , vm],

xm = Vmym =
m∑
i=1

vi (ym)i

⇒ The whole of ym may change at each iteration, but

crucial property

The components of ym have a decaying pattern
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The exact approach. Application of an operator.

To focus our attention: A = A.

Km = span{v ,Av , . . . ,Am−1v} Krylov subspace

♣ Vm = [v1, . . . , vm], orth basis, obtained with Arnoldi (Gram-Schmidt) process

v1 =
v

∥v∥
, v̂ = Avm −

m∑
i=1

vi (v
T
i Avm), vm+1 =

v̂

∥v̂∥

⇒ Arnoldi relation:

AVm = Vm+1Hm v = Vm+1e1β Hm =

[
Hm

hm+1,me
T
m

]
——————————–

System: xm ∈ Km ⇒ xm = Vmym (x0 = 0)

Eigenpb: (θ, y) eigenpair of Hm ⇒ (θ,Vmy) Ritz pair for (λ, x)
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The inexact key relation

A is not available

A = A → Aϵ ≈ A

e.g., Aϵv := Av + f , ∥f ∥ = ϵ

AVm = Vm+1Hm + Fm︸︷︷︸
[f1,f2,...,fm]

Fm error matrix, ∥fj∥ = O(ϵj)

——————————

How large is Fm allowed to be?
system:

rm = b − AVmym = b − Vm+1Hmym − Fmym

= Vm+1(e1β − Hmym)︸ ︷︷ ︸
computed residual=:r̃m

−Fmym

eigenproblem: (θ,Vmy)

rm = θVmy − AVmy = vm+1hm+1,me
T
my − Fmy
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A dynamic setting

true (unobservable) residual = computable residual −Fmy

Fmy = [f1, f2, . . . , fm]


η1
η2
...
ηm

 =
m∑
i=1

fiηi

⋄ The terms fiηi need to be small:

∥fiηi∥ <
1

m
ϵ ∀i ⇒ ∥Fmy∥ < ϵ

⋄ If ηi small ⇒ fi is allowed to be large
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Linear systems: The solution pattern

ym = [η1; η2; . . . ; ηm] depends on the chosen method, e.g.

• GMRES: ym = argminy∥e1β − Hmy∥,

|ηi | ≤
1

σmin(Hm)
∥r̃i−1∥

r̃i−1: GMRES computed residual at iteration i − 1.

Simoncini & Szyld, ’03 (see also Sleijpen & van den Eshof, ’04, Bouras-Frayssé ’05 )

Analogous result for Galerkin methods (e.g. FOM)
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Relaxing the inexactness in A

A · vi not performed exactly ⇒ (A+ Ei ) · vi
True (unobservable) vs. computed residuals:

rm = b − AVmym = Vm+1(e1β − Hmym)− Fmym

————————————-

GMRES: If (Similar result for FOM)

∥Ei∥ ≤
σmin(Hm)

m

1

∥r̃i−1∥
ε i = 1, . . . ,m

then ∥Fmym∥ ≤ ε ⇒ ∥rm − Vm+1(e1β − Hmym)∥ ≤ ε

r̃i−1: GMRES computed residual at iteration i − 1
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An example: Schur complement

BTS−1B︸ ︷︷ ︸
A

x = b yi ← BTS−1Bvi

Inexact matrix-vector product:{
Solve Swi = Bvi
Compute yi = BTwi

Inexact⇒
{

Approx solve Swi = Bvi ⇒ ŵi

Compute ŷi = BT ŵi

wi = ŵi + ϵi ϵi error in inner solution so that

Avi → BT ŵi = BTwi︸ ︷︷ ︸
Avi

−BTϵi︸ ︷︷ ︸
−Eivi

= (A+ Ei )vi
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Numerical experiment

BTS−1B︸ ︷︷ ︸
A

x = b at each it. i solve Swi = Bvi

Inexact FOM

δm = ∥rm − (b − Vm+1Hmym)∥
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Different problems. Similar setting.

Approximating the evaluation of a matrix function
Given Vm ∈ Rn×m whose columns are an orthogonal basis of some approximation space,
0 ̸= t ∈ R,

f (tA)v ≈ um := Vmf (tHm)e1,

“Residual” evaluation:

rm(t) := |hm+1,me
T
mf (tHm)e1|, hm+1,m = v⊤

m+1AVm

If u(t) = f (tA)v is the solution to the differential equation u(d) = Au for some derivative
d , then

rm(t) = Aum − u(d)m = AVmf (tHm)e1 − u(d)m = . . . = vm+1hm+1,me
T
mf (tHm)e1

Distance between exact and computable residuals: for Fm = [f1, . . . , fm],

|∥rm∥ − rm| ≤ ∥[f1, . . . , fm]f (tHm)e1∥ ≤
m∑
j=1

∥fj∥ |eTj f (tHm)e1|

Proof of element-wise decay of f (tHm)e1 in Pozza-Simoncini, BIT ’19
V. Simoncini - On the versatility of Krylov subspaces ... 13 / 24
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An example. Matrix pde225 from the Matrix Market repository

Approximation of e−Av with v = 1 (normalized)
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‖r̄j‖
ǭj

‖rj‖
tol/m

* Residual norm ∥rj∥ with constant accuracy ϵj = tol/m,
* residual norm ∥̄rj∥ with a variable strategy for the perturbation ϵ̄j as the inexact Arnoldi
method proceeds
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Multiterm linear matrix equation. 1

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

Possibly large dimensions, structured coefficient matrices

Kronecker formulation
(
B⊤
1 ⊗ A1 + . . .+ B⊤

ℓ ⊗ Aℓ

)
x = c ⇔ Ax = c

A ∈ Rnm×nm. ... Iterative methods
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta,

Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

♣ Same framework for multiple Kronecker terms, e.g.,

(A1 ⊗ B1 ⊗ C1 + . . .+ Aℓ ⊗ Bℓ ⊗ Cℓ) x = d
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Multiterm linear matrix equation. 2

Iterative methods: matrix-matrix multiplications and rank truncation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Alternatives to Kronecker form:

▶ Fixed point iterations (an “evergreen”...)

▶ Projection-type methods ⇒ low rank approximation

▶ Ad-hoc problem-dependent procedures

▶ etc.

♣ Many discretized problems now take this form
(SPDEs, parameter-dep PDEs, space-time PDEs, etc.)

Currently a very active area of research
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Iterative methods: matrix-matrix products and rank truncation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C , C low rank

Kronecker formulation in disguise:(
B⊤
1 ⊗ A1 + . . .+ B⊤

ℓ ⊗ Aℓ

)
x = c

Conjugate Gradients: Use X instead of x , where x = vec(X ),

Matrix-oriented “thinking”. Update:

xk+1 = xk + αkpk ⇒ Xk+1 = Xk + αkPk

Matrix-oriented “thinking”. Truncate:

Xk = UkU
T
k → X̃k+1 = Ũk+1Ũ

T
k+1 → Xk+1 = trunc(X̃k+1) = Uk+1U

T
k+1

(here Pk also low rank) trunc(X̃k+1) acts on the SVD of Xk+1
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Truncated matrix-oriented CG (TCG) for Kronecker form

Input: A(X ) = A1XB1 + A2XB2 + . . .+ AℓXBℓ, right-hand side C ∈ Rn×n in low-rank format.
Truncation operator trunc.
Output: Matrix X ∈ Rn×n in low-rank format s.t. ||A(X )− C ||F /||C ||F ≤ tol

1. X0 = 0, R0 = C , P0 = R0, Q0 = A(P0)

2. ξ0 = ⟨P0,Q0⟩, k = 0 ⟨X ,Y ⟩ = tr(X⊤Y )

3. While ||Rk ||F > tol

4. ωk = ⟨Rk ,Pk ⟩/ξk
5. Xk+1 = Xk + ωkPk , Xk+1 ← trunc(Xk+1)

6. Rk+1 = C −A(Xk+1), Optionally: Rk+1 ← trunc(Rk+1)

7. βk = −⟨Rk+1,Qk ⟩/ξk
8. Pk+1 = Rk+1 + βkPk , Pk+1 ← trunc(Pk+1)

9. Qk+1 = A(Pk+1), Optionally: Qk+1 ← trunc(Qk+1)

10. ξk+1 = ⟨Pk+1,Qk+1⟩
11. k = k + 1

12. end while

♣ Iterates kept in factored form! Kressner and Tobler, 2011
(truncation by tolerance and/or max rank)
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A very general reference strategy

This setting can accommodate various strategies:

▶ Rank and accuracy flexibility in (rhs) data

▶ Multiprecision and other memory conservative computations

▶ HPC implementations

▶ Fault tolerance implementations
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Effect of truncation

Let xk = vec(Xk) (and similarly for the other variables). Truncation can be written as

x (k+1) = x (k+1)
ex + e

(k+1)
X , p(k+1) = p(k+1)

ex + e
(k+1)
P

(e
(k+1)
X , e

(k+1)
P local truncation errors)

TH: Let ∆k = max{∥e(k)
P ∥, ∥e

(k)
X ∥, ∥e

(k+1)
P ∥, ∥e(k+1)

X ∥} and also

δk = min{∥e(k)
P ∥, ∥e

(k)
X ∥, ∥e

(k+1)
P ∥, ∥e(k+1)

X ∥}. Then there exists η ∈ [0, 1] such that

η
1

∥A−1∥
δk

∥r (k+1)∥
≤ |r
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Effect of truncation
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An example: AX + XA+MXM = c1c
⊤
1

A: 2D Laplace operator, M =pentadiag(−0.5,−1, 3.2,−1,−0.5), c1 random entries
Truncated CG residual norm (blue line) for different truncation values
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Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals
and residual and directions
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Conclusions

▶ Krylov-based approaches are very flexible

▶ Relaxation properties are versitile wrto problem

▶ Relaxation properties often arise in disguise

▶ Handling inexactness – instead of preventing it – is extremely useful in practice

Visit: www.dm.unibo.it/˜simoncin
Email address: valeria.simoncini@unibo.it
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Another example. The tough problems may remain so.

A = diag(λ1, . . . , λn) with λi = λ1 +
(i−1)
(n−1) (λn − λ1)ρ

n−i , λ1 = 0.1, λn = 100

M: diagonal matrix with elements logarithmically distributed in [10−2, 100]
Convergence history of TCG for two truncation tolerances:
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Left: ρ = 0.4 Right: ρ = 0.8
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Different problems. Similar setting. 2

Large scale Lyapunov equation (also for Sylvester eqn):

AX + XA⊤ + BB⊤ = 0

Projection-type methods
Given a low dimensional approximation space K,

X ≈ Xm = VmYV
T
m col(Xm) ∈ K

Galerkin condition: R := AXm + XmA
⊤ + BB⊤ ⊥ K

V⊤
m RVm = 0 K = Range(Vm)

Proofs of element-wise decay in Y :

▶ Standard Krylov (Simoncini ’15)

▶ Rational Krylov (Pozza-Simoncini ’19, see also Freitag-Kürschner ’20)
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