On the versatility of Krylov subspaces in modern matrix computations

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

Algebraic computations. I

Old and new challenges in Scientific Computing

- Solution of block-structured/preconditioned large linear systems,

$$
A x=b \quad n \times n
$$

- Eigensolver requiring spectral transformations

$$
A x=\lambda M x, \quad\|x\|=1
$$

- Large scale matrix function evaluations

$$
x=\exp (A) v, \quad x=\sqrt{A} v, \quad \text { etc. }
$$

- Matrix and Tensor equations

$$
\left(A_{1} \otimes B_{1} \otimes C_{1}+\ldots+A_{\ell} \otimes B_{\ell} \otimes C_{\ell}\right) x=b
$$

Algebraic computations. II

Old and new frameworks in Scientific Computing

- Many-dimensional problems (high-dim tensorized form)
- Algebraic formulations
- Memory constraints (for data and solution)
- Finite Precision computations

Rigorous round-off error analysis vs flexibility Accuracy tradeoff's

- Mixed-precision computations High performance machines Computation lightnening

Algebraic computations. II

Old and new frameworks in Scientific Computing

- Many-dimensional problems (high-dim tensorized form)
- Algebraic formulations
- Memory constraints (for data and solution)
- Finite Precision computations
- Rigorous round-off error analysis vs flexibility
- Accuracy tradeoffs
- Mixed-precision computations High performance machines Computation lightnening

Algebraic computations. II

Old and new frameworks in Scientific Computing

- Many-dimensional problems (high-dim tensorized form)
- Algebraic formulations
- Memory constraints (for data and solution)
- Finite Precision computations
- Rigorous round-off error analysis vs flexibility
- Accuracy tradeoffs
- Mixed-precision computations
- High performance machines
- Computation lightnening

The framework - iterative methods

- Inexact operator $v \rightarrow \mathcal{A}_{\epsilon}(v)$
where $\mathcal{A}_{\epsilon} \rightarrow \mathcal{A}$ for $\epsilon \rightarrow 0 \quad$ (ϵ may be tuned)
(e.g., Preconditioning, Schur complements, spectral transformations, etc.)
- Truncated computations:

Inner products, matrix and vector sums

The framework - iterative methods

- Inexact operator $v \rightarrow \mathcal{A}_{\epsilon}(v)$
where $\mathcal{A}_{\epsilon} \rightarrow \mathcal{A}$ for $\epsilon \rightarrow 0 \quad$ (ϵ may be tuned)
(e.g., Preconditioning, Schur complements, spectral transformations, etc.)
- Truncated computations:

Inner products, matrix and vector sums

Classical nightmare

The framework - iterative methods

- Inexact operator $v \rightarrow \mathcal{A}_{\epsilon}(v)$
where $\mathcal{A}_{\epsilon} \rightarrow \mathcal{A}$ for $\epsilon \rightarrow 0 \quad$ (ϵ may be tuned)
(e.g., Preconditioning, Schur complements, spectral transformations, etc.)
- Truncated computations:

Inner products, matrix and vector sums

Classical nightmare

Accuracy and optimality properties are lost

The framework - iterative methods

- Inexact operator $v \rightarrow \mathcal{A}_{\epsilon}(v)$
where $\mathcal{A}_{\epsilon} \rightarrow \mathcal{A}$ for $\epsilon \rightarrow 0 \quad$ (ϵ may be tuned)
(e.g., Preconditioning, Schur complements, spectral transformations, etc.)
- Truncated computations:

Inner products, matrix and vector sums

Classical nightmare

Accuracy and optimality properties are lost

Goal: Achieve approximation x_{m} to x within a fixed tolerance, by using \mathcal{A}_{ϵ} (and not \mathcal{A}), with variable ϵ

The important ingredients

- Inexact operator $v \rightarrow \mathcal{A}_{\epsilon}(v)$:

$$
y=\mathcal{A}_{\epsilon}(v)=\mathcal{A} v+w, \quad\|w\|=\epsilon(v)
$$

\rightarrow Incremental approximation: growing subspace, with basis $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$,

\Rightarrow The whole of y_{m} may change at each iteration, but

crucial property

The components of y_{m} have a decaying pattern

The important ingredients

- Inexact operator $v \rightarrow \mathcal{A}_{\epsilon}(v)$:

$$
y=\mathcal{A}_{\epsilon}(v)=\mathcal{A} v+w, \quad\|w\|=\epsilon(v)
$$

- Incremental approximation: growing subspace, with basis $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$,

$$
x_{m}=V_{m} y_{m}=\sum_{i=1}^{m} v_{i}\left(y_{m}\right)_{i}
$$

\Rightarrow The whole of y_{m} may change at each iteration, but

crucial property

The components of y_{m} have a decaying pattern

The exact approach. Application of an operator.

To focus our attention: $\mathcal{A}=A$.

$$
\mathcal{K}_{m}=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\} \quad \text { Krylov subspace }
$$

\& $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$, orth basis, obtained with Arnoldi (Gram-Schmidt) process

$$
v_{1}=\frac{v}{\|v\|}, \quad \hat{v}=A v_{m}-\sum_{i=1}^{m} v_{i}\left(v_{i}^{\top} A v_{m}\right), \quad v_{m+1}=\frac{\hat{v}}{\|\hat{v}\|}
$$

\Rightarrow Arnoldi relation:

$$
A V_{m}=V_{m+1} H_{m} \quad v=V_{m+1} e_{1} \beta \quad \underline{H}_{m}=\left[\begin{array}{c}
H_{m} \\
h_{m+1, m} e_{m}^{T}
\end{array}\right]
$$

The exact approach. Application of an operator.

To focus our attention: $\mathcal{A}=A$.

$$
\mathcal{K}_{m}=\operatorname{span}\left\{v, A v, \ldots, A^{m-1} v\right\} \quad \text { Krylov subspace }
$$

\& $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$, orth basis, obtained with Arnoldi (Gram-Schmidt) process

$$
v_{1}=\frac{v}{\|v\|}, \quad \hat{v}=A v_{m}-\sum_{i=1}^{m} v_{i}\left(v_{i}^{\top} A v_{m}\right), \quad v_{m+1}=\frac{\hat{v}}{\|\hat{v}\|}
$$

\Rightarrow Arnoldi relation:

$$
A V_{m}=V_{m+1} \underline{H}_{m} \quad v=V_{m+1} e_{1} \beta \quad \underline{H}_{m}=\left[\begin{array}{c}
H_{m} \\
h_{m+1, m} e_{m}^{T}
\end{array}\right]
$$

System: $\quad x_{m} \in \mathcal{K}_{m} \quad \Rightarrow \quad x_{m}=V_{m} y_{m} \quad\left(x_{0}=0\right)$
Eigenpb: (θ, y) eigenpair of $H_{m} \quad \Rightarrow \quad\left(\theta, V_{m} y\right)$ Ritz pair for (λ, x)

The inexact key relation

\mathcal{A} is not available

$$
\mathcal{A}=A \quad \rightarrow \quad \mathcal{A}_{\epsilon} \approx A
$$

e.g., $\mathcal{A}_{\epsilon} v:=\mathcal{A} v+f, \quad\|f\|=\epsilon$

$$
A V_{m}=V_{m+1} \underline{H}_{m}+\underbrace{F_{m}}_{\left[f_{1}, f_{2}, \ldots, f_{m}\right]} F_{m} \text { error matrix, }\left\|f_{j}\right\|=O\left(\epsilon_{j}\right)
$$

How large is F_{m} allowed to be?

system:

The inexact key relation

\mathcal{A} is not available

$$
\mathcal{A}=A \quad \rightarrow \quad \mathcal{A}_{\epsilon} \approx A
$$

e.g., $\mathcal{A}_{\epsilon} v:=\mathcal{A} v+f, \quad\|f\|=\epsilon$

$$
A V_{m}=V_{m+1} \underline{H}_{m}+\underbrace{F_{m}}_{\left[f_{1}, f_{2}, \ldots, f_{m}\right]} F_{m} \text { error matrix, }\left\|f_{j}\right\|=O\left(\epsilon_{j}\right)
$$

How large is F_{m} allowed to be?
system:

$$
\begin{aligned}
r_{m} & =b-A V_{m} y_{m}=b-V_{m+1} \underline{H}_{m} y_{m}-F_{m} y_{m} \\
& =\underbrace{V_{m+1}\left(e_{1} \beta-\underline{H}_{m} y_{m}\right)}_{\text {computed residual }=: \tilde{r}_{m}}-F_{m} y_{m}
\end{aligned}
$$

The inexact key relation

\mathcal{A} is not available

$$
\mathcal{A}=A \quad \rightarrow \quad \mathcal{A}_{\epsilon} \approx A
$$

e.g., $\mathcal{A}_{\epsilon} v:=\mathcal{A} v+f, \quad\|f\|=\epsilon$

$$
A V_{m}=V_{m+1} \underline{H}_{m}+\underbrace{F_{m}}_{\left[f_{1}, f_{2}, \ldots, f_{m}\right]} F_{m} \text { error matrix, }\left\|f_{j}\right\|=O\left(\epsilon_{j}\right)
$$

How large is F_{m} allowed to be?
system:

$$
\begin{aligned}
r_{m} & =b-A V_{m} y_{m}=b-V_{m+1} \underline{H}_{m} y_{m}-F_{m} y_{m} \\
& =\underbrace{V_{m+1}\left(e_{1} \beta-\underline{H}_{m} y_{m}\right)}_{\text {computed residual }=: \tilde{r}_{m}}-F_{m} y_{m}
\end{aligned}
$$

eigenproblem: $\quad\left(\theta, V_{m} y\right)$

$$
r_{m}=\theta V_{m} y-A V_{m} y=v_{m+1} h_{m+1, m} e_{m}^{T} y-F_{m} y
$$

A dynamic setting

true (unobservable) residual $=$ computable residual $-F_{m} y$

The terms $f_{i} \eta_{i}$ need to be small:

If η_{i} small
$\Rightarrow \quad f_{i}$ is allowed to be large

A dynamic setting

$$
\text { true (unobservable) residual }=\text { computable residual }-F_{m} y
$$

$$
F_{m} y=\left[f_{1}, f_{2}, \ldots, f_{m}\right]\left[\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\vdots \\
\eta_{m}
\end{array}\right]=\sum_{i=1}^{m} f_{i} \eta_{i}
$$

\diamond The terms $f_{i} \eta_{i}$ need to be small:

$$
\left\|f_{i} \eta_{i}\right\|<\frac{1}{m} \epsilon \quad \forall i \quad \Rightarrow \quad\left\|F_{m} y\right\|<\epsilon
$$

\diamond If η_{i} small $\quad \Rightarrow \quad f_{i}$ is allowed to be large

Linear systems: The solution pattern

$y_{m}=\left[\eta_{1} ; \eta_{2} ; \ldots ; \eta_{m}\right]$ depends on the chosen method, e.g.

- GMRES: $\quad y_{m}=\operatorname{argmin}_{y}\left\|e_{1} \beta-\underline{H}_{m} y\right\|$,

$$
\left|\eta_{i}\right| \leq \frac{1}{\sigma_{\min }\left(\underline{H}_{m}\right)}\left\|\tilde{r}_{i-1}\right\|
$$

$\tilde{r}_{i-1}:$ GMRES computed residual at iteration $i-1$.

Simoncini \& Szyld, '03 (see also Sleijpen \& van den Eshof, '04, Bouras-Frayssé '05)
Analogous result for Galerkin methods (e.g. FOM)

Relaxing the inexactness in A

$A \cdot v_{i}$ not performed exactly $\quad \Rightarrow \quad\left(A+E_{i}\right) \cdot v_{i}$
True (unobservable) vs. computed residuals:

$$
r_{m}=b-A V_{m} y_{m}=V_{m+1}\left(e_{1} \beta-\underline{H}_{m} y_{m}\right)-F_{m} y_{m}
$$

GMRES: If
(Similar result for FOM)

$$
\begin{gathered}
\left\|E_{i}\right\| \leq \frac{\sigma_{\min }\left(\underline{H}_{m}\right)}{m} \frac{1}{\left\|\tilde{r}_{i-1}\right\|} \varepsilon \quad i=1, \ldots, m \\
\text { then }\left\|F_{m} y_{m}\right\| \leq \varepsilon \quad \Rightarrow \quad\left\|r_{m}-V_{m+1}\left(e_{1} \beta-\underline{H}_{m} y_{m}\right)\right\| \leq \varepsilon
\end{gathered}
$$

\tilde{r}_{i-1} : GMRES computed residual at iteration $i-1$

An example: Schur complement

$$
\underbrace{B^{T} S^{-1} B}_{A} x=b \quad y_{i} \leftarrow B^{T} S^{-1} B v_{i}
$$

Inexact matrix-vector product:

$$
\left\{\begin{array} { l }
{ \text { Solve } S w _ { i } = B v _ { i } } \\
{ \text { Compute } y _ { i } = B ^ { T } w _ { i } }
\end{array} \quad \stackrel { \text { Inexact } } { \Rightarrow } \quad \left\{\begin{array}{c}
\text { Approx solve } S w_{i}=B v_{i} \quad \Rightarrow \widehat{w}_{i} \\
\text { Compute } \widehat{y}_{i}=B^{T} \widehat{w}_{i}
\end{array}\right.\right.
$$

$$
w_{i}=\widehat{w}_{i}+\boldsymbol{\epsilon}_{i} \quad \boldsymbol{\epsilon}_{i} \text { error in inner solution } \quad \text { so that }
$$

$$
A v_{i} \quad \rightarrow \quad B^{T} \widehat{w}_{i}=\underbrace{B^{T} w_{i}}_{A v_{i}}-\underbrace{B^{T} \epsilon_{i}}_{-E_{i} v_{i}}=\left(A+E_{i}\right) v_{i}
$$

Numerical experiment

Inexact FOM

$$
\underbrace{B^{T} S^{-1} B}_{A} x=b \quad \text { at each it. } i \text { solve } S w_{i}=B v_{i}
$$

$$
\delta_{m}=\left\|r_{m}-\left(b-V_{m+1} \underline{H}_{m} y_{m}\right)\right\|
$$

Different problems. Similar setting.

Approximating the evaluation of a matrix function Given $V_{m} \in \mathbb{R}^{n \times m}$ whose columns are an orthogonal basis of some approximation space, $0 \neq t \in \mathbb{R}$,

$$
f(t A) v \approx \mathbf{u}_{m}:=V_{m} f\left(t H_{m}\right) e_{1}
$$

"Residual" evaluation:

$$
r_{m}(t):=\left|h_{m+1, m} \mathbf{e}_{m}^{\top} f\left(t H_{m}\right) \mathbf{e}_{1}\right|, \quad h_{m+1, m}=v_{m+1}^{\top} A V_{m}
$$

If $u(t)=f(t A) v$ is the solution to the differential equation $u^{(d)}=A u$ for some derivative d, then

$$
\mathbf{r}_{m}(t)=A \mathbf{u}_{m}-\mathbf{u}_{m}^{(d)}=A V_{m} f\left(t H_{m}\right) \mathbf{e}_{1}-\mathbf{u}_{m}^{(d)}=\ldots=\mathbf{v}_{m+1} h_{m+1, m} \mathbf{e}_{m}^{T} f\left(t H_{m}\right) \mathbf{e}_{1}
$$

Distance between exact and computable residuals: for $F_{m}=\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right]$,

Different problems. Similar setting.

Approximating the evaluation of a matrix function
Given $V_{m} \in \mathbb{R}^{n \times m}$ whose columns are an orthogonal basis of some approximation space, $0 \neq t \in \mathbb{R}$,

$$
f(t A) v \approx \mathbf{u}_{m}:=V_{m} f\left(t H_{m}\right) e_{1}
$$

"Residual" evaluation:

$$
r_{m}(t):=\left|h_{m+1, m} \mathbf{e}_{m}^{\top} f\left(t H_{m}\right) \mathbf{e}_{1}\right|, \quad h_{m+1, m}=v_{m+1}^{\top} A V_{m}
$$

If $u(t)=f(t A) v$ is the solution to the differential equation $u^{(d)}=A u$ for some derivative d, then

$$
\mathbf{r}_{m}(t)=A \mathbf{u}_{m}-\mathbf{u}_{m}^{(d)}=A V_{m} f\left(t H_{m}\right) \mathbf{e}_{1}-\mathbf{u}_{m}^{(d)}=\ldots=\mathbf{v}_{m+1} h_{m+1, m} \mathbf{e}_{m}^{T} f\left(t H_{m}\right) \mathbf{e}_{1}
$$

Distance between exact and computable residuals: for $F_{m}=\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right]$,

$$
\left|\left\|\mathbf{r}_{m}\right\|-r_{m}\right| \leq\left\|\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right] f\left(t H_{m}\right) \mathbf{e}_{1}\right\| \leq \sum_{j=1}^{m}\left\|\mathbf{f}_{j}\right\|\left|\mathbf{e}_{j}^{T} f\left(t H_{m}\right) \mathbf{e}_{1}\right|
$$

Proof of element-wise decay of $f\left(t H_{m}\right) \mathbf{e}_{1}$ in Pozza-Simoncini, BIT '19

An example. Matrix pde225 from the Matrix Market repository

Approximation of $e^{-A} \mathbf{v}$ with $\mathbf{v}=1$ (normalized)

* Residual norm $\left\|\mathbf{r}_{j}\right\|$ with constant accuracy $\epsilon_{j}=$ tol $/ m$,
* residual norm $\left\|\overline{\mathbf{r}}_{j}\right\|$ with a variable strategy for the perturbation $\bar{\epsilon}_{j}$ as the inexact Arnoldi method proceeds

Multiterm linear matrix equation. 1

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix

Possibly large dimensions, structured coefficient matrices
$A \in \mathbb{T n m \times n m}$... Iterative methods
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Multiterm linear matrix equation. 1

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix
Possibly large dimensions, structured coefficient matrices

Kronecker formulation $\quad\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \Leftrightarrow \mathcal{A} \boldsymbol{x}=c$
$\mathcal{A} \in \mathbb{R}^{n m \times n m}$. ... Iterative methods
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)
\& Same framework for multiple Kronecker terms, e.g.,

Multiterm linear matrix equation. 1

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix
Possibly large dimensions, structured coefficient matrices

Kronecker formulation $\quad\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \Leftrightarrow \mathcal{A} \boldsymbol{x}=c$
$\mathcal{A} \in \mathbb{R}^{n m \times n m}$. ... Iterative methods
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)
\& Same framework for multiple Kronecker terms, e.g.,

$$
\left(A_{1} \otimes B_{1} \otimes C_{1}+\ldots+A_{\ell} \otimes B_{\ell} \otimes C_{\ell}\right) x=d
$$

Multiterm linear matrix equation. 2

Iterative methods: matrix-matrix multiplications and rank truncation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Alternatives to Kronecker form

- Fixed point iterations (an "evergreen" ...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- ctc
\& Many discretized problems now take this form
(SPDEs, parameter-dep PDEs, space-time PDEs, etc.)

Currently a very active area of research

Multiterm linear matrix equation. 2

Iterative methods: matrix-matrix multiplications and rank truncation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Alternatives to Kronecker form:

- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.
\& Many discretized problems now take this form (SPDEs, parameter-dep PDEs, space-time PDEs, etc.)

Currently a very active area of research

Iterative methods: matrix-matrix products and rank truncation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=C, \quad C \text { low rank }
$$

Kronecker formulation in disguise:

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c
$$

Conjugate Gradients: Use X instead of \boldsymbol{x}, where $\boldsymbol{x}=\operatorname{vec}(X)$,
Matrix-oriented "thinking". Update:

Iterative methods: matrix-matrix products and rank truncation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=C, \quad C \text { low rank }
$$

Kronecker formulation in disguise:

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c
$$

Conjugate Gradients: Use X instead of \boldsymbol{x}, where $\boldsymbol{x}=\operatorname{vec}(X)$,

Matrix-oriented "thinking". Update:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad \Rightarrow \quad X_{k+1}=X_{k}+\alpha_{k} P_{k}
$$

Matrix-oriented "thinking". Truncate:

Iterative methods: matrix-matrix products and rank truncation

$$
A_{1} X B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}=C, \quad C \text { low rank }
$$

Kronecker formulation in disguise:

$$
\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c
$$

Conjugate Gradients: Use X instead of \boldsymbol{x}, where $\boldsymbol{x}=\operatorname{vec}(X)$,

Matrix-oriented "thinking". Update:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad \Rightarrow \quad X_{k+1}=X_{k}+\alpha_{k} P_{k}
$$

Matrix-oriented "thinking". Truncate:

$$
X_{k}=U_{k} U_{k}^{T} \quad \rightarrow \quad \widetilde{X}_{k+1}=\widetilde{U}_{k+1} \widetilde{U}_{k+1}^{T} \quad \rightarrow \quad X_{k+1}=\operatorname{trunc}\left(\widetilde{X}_{k+1}\right)=U_{k+1} U_{k+1}^{T}
$$

(here P_{k} also low rank)

$$
\operatorname{trunc}\left(\widetilde{X}_{k+1}\right) \text { acts on the SVD of } X_{k+1}
$$

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $\mathcal{A}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format. Truncation operator trunc.
Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $\|\mathcal{A}(X)-C\|_{F} /\|C\|_{F} \leq t o l$

1. $X_{0}=0, R_{0}=C, P_{0}=R_{0}, Q_{0}=\mathcal{A}\left(P_{0}\right)$
2. $\xi_{0}=\left\langle P_{0}, Q_{0}\right\rangle, k=0$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

3. While $\left\|R_{k}\right\|_{F}>$ tol
4. $\omega_{k}=\left\langle R_{k}, P_{k}\right\rangle / \xi_{k}$
5. $\quad X_{k+1}=X_{k}+\omega_{k} P_{k}$,
$X_{k+1} \leftarrow \operatorname{trunc}\left(X_{k+1}\right)$
6. $\quad R_{k+1}=C-\mathcal{A}\left(X_{k+1}\right)$,

Optionally: $\quad R_{k+1} \leftarrow \operatorname{trunc}\left(R_{k+1}\right)$
7. $\beta_{k}=-\left\langle R_{k+1}, Q_{k}\right\rangle / \xi_{k}$
8. $\quad P_{k+1}=R_{k+1}+\beta_{k} P_{k}$,
$P_{k+1} \leftarrow \operatorname{trunc}\left(P_{k+1}\right)$
9. $Q_{k+1}=\mathcal{A}\left(P_{k+1}\right)$,

Optionally: $\quad Q_{k+1} \leftarrow \operatorname{trunc}\left(Q_{k+1}\right)$
10. $\quad \xi_{k+1}=\left\langle P_{k+1}, Q_{k+1}\right\rangle$
11. $k=k+1$
12. end while

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $\mathcal{A}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format. Truncation operator trunc.
Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $\|\mathcal{A}(X)-C\|_{F} /\|C\|_{F} \leq$ tol

1. $X_{0}=0, R_{0}=C, P_{0}=R_{0}, Q_{0}=\mathcal{A}\left(P_{0}\right)$
2. $\xi_{0}=\left\langle P_{0}, Q_{0}\right\rangle, k=0$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

3. While $\left\|R_{k}\right\|_{F}>t o l$
4. $\omega_{k}=\left\langle R_{k}, P_{k}\right\rangle / \xi_{k}$
5. $X_{k+1}=X_{k}+\omega_{k} P_{k}$,
$X_{k+1} \leftarrow \operatorname{trunc}\left(X_{k+1}\right)$
6. $R_{k+1}=C-\mathcal{A}\left(X_{k+1}\right)$,

Optionally: $\quad R_{k+1} \leftarrow \operatorname{trunc}\left(R_{k+1}\right)$
7. $\beta_{k}=-\left\langle R_{k+1}, Q_{k}\right\rangle / \xi_{k}$
8. $P_{k+1}=R_{k+1}+\beta_{k} P_{k}$,
$P_{k+1} \leftarrow \operatorname{trunc}\left(P_{k+1}\right)$
9. $Q_{k+1}=\mathcal{A}\left(P_{k+1}\right)$,

Optionally: $\quad Q_{k+1} \leftarrow \operatorname{trunc}\left(Q_{k+1}\right)$
10. $\xi_{k+1}=\left\langle P_{k+1}, Q_{k+1}\right\rangle$
11. $k=k+1$
12. end while
\& Iterates kept in factored form!
Kressner and Tobler, 2011
(truncation by tolerance and/or max rank)

A very general reference strategy

This setting can accommodate various strategies:

- Rank and accuracy flexibility in (rhs) data
- Multiprecision and other memory conservative computations
- HPC implementations
- Fault tolerance implementations

Effect of truncation

Let $x_{k}=\operatorname{vec}\left(X_{k}\right)$ (and similarly for the other variables). Truncation can be written as

$$
x^{(k+1)}=x_{e x}^{(k+1)}+\boldsymbol{e}_{X}^{(k+1)}, \quad p^{(k+1)}=p_{e x}^{(k+1)}+\boldsymbol{e}_{P}^{(k+1)}
$$

$\left(\boldsymbol{e}_{X}^{(k+1)}, \boldsymbol{e}_{P}^{(k+1)}\right.$ local truncation errors)

Moreover, with

Effect of truncation

Let $x_{k}=\operatorname{vec}\left(X_{k}\right)$ (and similarly for the other variables). Truncation can be written as

$$
x^{(k+1)}=x_{e x}^{(k+1)}+\boldsymbol{e}_{X}^{(k+1)}, \quad p^{(k+1)}=p_{e x}^{(k+1)}+\boldsymbol{e}_{P}^{(k+1)}
$$

$\left(\boldsymbol{e}_{X}^{(k+1)}, \boldsymbol{e}_{P}^{(k+1)}\right.$ local truncation errors)

TH: Let $\Delta_{k}=\max \left\{\left\|\boldsymbol{e}_{P}^{(k)}\right\|,\left\|\boldsymbol{e}_{X}^{(k)}\right\|,\left\|\boldsymbol{e}_{P}^{(k+1)}\right\|,\left\|\boldsymbol{e}_{X}^{(k+1)}\right\|\right\}$ and also $\delta_{k}=\min \left\{\left\|\boldsymbol{e}_{P}^{(k)}\right\|,\left\|\boldsymbol{e}_{X}^{(k)}\right\|,\left\|\boldsymbol{e}_{P}^{(k+1)}\right\|,\left\|\boldsymbol{e}_{X}^{(k+1)}\right\|\right\}$. Then there exists $\eta \in[0,1]$ such that

$$
\eta \frac{1}{\left\|\mathcal{A}^{-1}\right\|} \frac{\delta_{k}}{\left\|r^{(k+1)}\right\|} \leq \frac{\left.\mid r^{(k+1)}\right)^{\top} p^{(k)} \mid}{\left\|r^{(k+1)}\right\|\left\|p^{(k)}\right\|} \leq\|\mathcal{A}\| \frac{\Delta_{k}}{\left\|r^{(k+1)}\right\|},
$$

and

$$
\beta_{k}=-\frac{\left(r_{e x}^{(k+1)}\right)^{\top} \mathcal{A} p^{(k)}-\left(\mathcal{A} \boldsymbol{e}_{x}^{(k+1)}\right)^{\top} \mathcal{A} p^{(k)}}{\left(p^{(k)}\right)^{\top} \mathcal{A} p^{(k)}}
$$

Moreover, with $\left.\gamma=\left\|\mathcal{A}^{(k)}\right\|+\left(2\left|\beta_{k-1}\right|+\left|\beta_{k-1} \alpha_{k}\right|\right)\left\|\mathcal{A}^{(k-1)}\right\|+\left\|r^{(k+1)}\right\|\right) /\left\|r^{(k)}\right\|$

$$
\frac{\left.\mid r^{(k+1)}\right)^{\top} r^{(k)} \mid}{\left\|r^{(k+1)}\right\|\left\|r^{(k)}\right\|} \leq \gamma \frac{\Delta_{k}}{\left\|r^{(k+1)}\right\|}
$$

An example: $A X+X A+M X M=c_{1} c_{1}^{\top}$

A: 2D Laplace operator, $M=$ pentadiag $(-0.5,-1, \underline{3.2},-1,-0.5), c_{1}$ random entries Truncated CG residual norm (blue line) for different truncation values

Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals and residual and directions

Conclusions

- Krylov-based approaches are very flexible
- Relaxation properties are versitile wrto problem
- Relaxation properties often arise in disguise
- Handling inexactness - instead of preventing it - is extremely useful in practice

Visit: www.dm.unibo.it/ simoncin
Email address: valeria.simoncini@unibo.it

Another example. The tough problems may remain so.

$A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i}=\lambda_{1}+\frac{(i-1)}{(n-1)}\left(\lambda_{n}-\lambda_{1}\right) \rho^{n-i}, \lambda_{1}=0.1, \quad \lambda_{n}=100$
M : diagonal matrix with elements logarithmically distributed in $\left[10^{-2}, 10^{0}\right]$
Convergence history of TCG for two truncation tolerances:

Left: $\rho=0.4$

Right: $\rho=0.8$

Different problems. Similar setting. 2

Large scale Lyapunov equation (also for Sylvester eqn):

$$
A \boldsymbol{X}+\boldsymbol{X} A^{\top}+B B^{\top}=0
$$

Projection-type methods
Given a low dimensional approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m}=V_{m} Y V_{m}^{T} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \perp \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Proofs of element-wise decay in Y :

- Standard Krylov (Simoncini '15)
- Rational Krylov (Pozza-Simoncini '19, see also Freitag-Kürschner '20)

Different problems. Similar setting. 2

Large scale Lyapunov equation (also for Sylvester eqn):

$$
A \boldsymbol{X}+\boldsymbol{X} A^{\top}+B B^{\top}=0
$$

Projection-type methods
Given a low dimensional approximation space \mathcal{K},

$$
\mathbf{X} \approx X_{m}=V_{m} Y V_{m}^{T} \quad \operatorname{col}\left(X_{m}\right) \in \mathcal{K}
$$

Galerkin condition: $R:=A X_{m}+X_{m} A^{\top}+B B^{\top} \quad \perp \quad \mathcal{K}$

$$
V_{m}^{\top} R V_{m}=0 \quad \mathcal{K}=\operatorname{Range}\left(V_{m}\right)
$$

Proofs of element-wise decay in Y :

- Standard Krylov (Simoncini '15)
- Rational Krylov (Pozza-Simoncini '19, see also Freitag-Kürschner '20)

