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Multiterm linear matrix equation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transfor-
mation to a matrix-vector equation [...] allows us to use the considerable arsenal
of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970
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Multiterm linear matrix equation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

▶ Kronecker form and back on track

▶ Fixed point iterations (an “evergreen”...)

▶ Projection-type methods ⇒ low rank approximation

▶ Ad-hoc problem-dependent procedures

▶ etc.

A sample of these methodologies on different problems:

♣ Stochastic PDEs

♣ PDEs on polygonal domains, IGA, spectral methods, etc

♣ Space-time PDEs

♣ All-at-once PDE-constrained optimization problem

♣ Bilinear control problems

♣ ....
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Multiterm linear matrix equation. Classical device

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Kronecker formulation
(
B⊤
1 ⊗ A1 + . . .+ B⊤

ℓ ⊗ Aℓ

)
x = c ⇔ Ax = c

Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy,

Palitta, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : M ⊗ P =

m11P . . . m1nP
...

. . .
...

mn1P . . . mnnP

 and vec(AXB) = (B⊤ ⊗ A)vec(X )

Current very active area of research
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CG matricization and truncation

⋆ Matricization. Typically,

x (k+1) = x (k) + αkp
(k) ∈ Rn2 ⇒ X (k+1) = X (k) + αkP

(k) ∈ Rn×n

⋆ Truncation. If X (k) = X
(k)
1 (X

(k)
1 )⊤ with X

(k)
1 low rank, and similarly for P(k), then

X (k+1) = X
(k)
1 (X

(k)
1 )⊤ + αkP

(k)
1 (P

(k)
1 )⊤

▶ X (k+1) low rank:

X (k+1) = [X
(k)
1 ,

√
αkP

(k)
1 ] [X

(k)
1 ,

√
αkP

(k)
1 ]⊤

(but generally larger than at iteration k)

▶ Cure: Rank shrinking [X
(k)
1 ,

√
αkP

(k)
1 ] ⇒ X

(k+1)
1 X (k+1) ≈ X

(k+1)
1 (X

(k+1)
1 )⊤

Implementation: T (X (k+1)) acts on the SVD of X (k+1)

Alternative truncation criteria:
♣ Fix lower threshold tolerance ♣ Fix maximum allowed rank
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Truncated matrix-oriented CG (TCG) for Kronecker form

Input: L(X ) = A1XB1 + A2XB2 + . . .+ AℓXBℓ, right-hand side C ∈ Rn×n in low-rank format.
Truncation operator T .
Output: Matrix X ∈ Rn×n in low-rank format s.t. ||L(X )− C ||F /||C ||F ≤ tol

1. X0 = 0, R0 = C , P0 = R0, Q0 = L(P0)

2. ξ0 = ⟨P0,Q0⟩, k = 0 ⟨X ,Y ⟩ = tr(X⊤Y )

3. While ||Rk ||F > tol

4. ωk = ⟨Rk ,Pk ⟩/ξk
5. Xk+1 = Xk + ωkPk , Xk+1 ← T (Xk+1)

6. Rk+1 = C − L(Xk+1), Optionally: Rk+1 ← T (Rk+1)

7. βk = −⟨Rk+1,Qk ⟩/ξk
8. Pk+1 = Rk+1 + βkPk , Pk+1 ← T (Pk+1)

9. Qk+1 = L(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10. ξk+1 = ⟨Pk+1,Qk+1⟩
11. k = k + 1

12. end while

♣ Iterates kept in factored form! Kressner and Tobler, ’11
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Exploring the iteration matrices

CG minimizes error in the energy norm ⇒ in the ∥X∥L norm

∥X∥2L := trace
(
X⊤L(X )

)
with L(X ) = A1XB1 + A2XB2 + . . .+ AℓXBℓ

Numerical evidence: As TCG iterations proceed

▶ Singular triplets of X (k) seem to converge in an orderly fashion to those of X⋆

▶ The numerical rank of X (k) increases up to some point, then it decreases

(Kressner, Plesinger& Tobler, ’14)
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Typical convergence behavior
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=1e-4

=1e-6

=1e-7

(Hao, ’20, personal comm.)

V. Simoncini - On TCG for linear matrix equations 8 / 19



Typical iterate rank behavior
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(Simoncini & Hao, ’22, also main reference for the following)
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Towards an understanding.

Outline of our findings:

▶ No theoretical ground for a low rank throughout

▶ Approximation space wildly affected by truncation

▶ Loss of orthogonality properties leads to “relaxed Krylov” framework
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Towards an understanding. A skinny setting. 1

Consider

AX + XA+MXM = C

with A,M ∈ Rn×n spd, C ∈ Rn×n sym. low rank.

Note: This is equivalent to BTYD + DTYB + Y = F in the unknown Y

Some properties:

▶ Solution X ⋆ ∈ Rn×n is symmetric

▶ Assuming |λ1| ≥ . . . ≥ |λn|,

|λm+1| = min
X∈Rn×n

rank(X )=m

∥X ⋆ − X∥ ≤ ∥X ⋆ − X̃∥

for any X̃ rank-m symmetric approximation to X ⋆
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Towards an understanding. A skinny setting. 2

|λm+1| = min
X∈Rn×n

rank(X )=m

∥X ⋆ − X∥ ≤ ∥X ⋆ − X̃∥ (∗)

▶ The error norm ∥X ⋆ − X̃∥ in (∗) provides a, not necessarily sharp, upper bound for
the (m + 1)st singular value of X ⋆

(Penzl, ’00)

▶ Given a rank-m matrix X̃ , (∗) indicates that the error norm ∥X ⋆ − X̃∥ cannot go
below |λm+1|

We assume X ⋆ can be well approximated by a low rank matrix

(see, e.g., Benner & Breiten, ’13)
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Singular values and error matrix

Let E (k) = X ⋆ − X (k). We first note

∥E (k)∥2 ≤ ∥E (k)∥F ≤ λmin(A)−
1
2 ∥X ⋆ − X (k)∥L

⇒ the approximation of X (k) to X ⋆ occurs in terms of singular values

That is,

As convergence takes place (i.e., ∥X ⋆ − X (k)∥ decreases) the leading singular triplets of
X (k) tend to match those of X

However, below the level of the error norm the singular values of the two matrices
X⋆ and X (k) can vary significantly

(Formalization by using Wedin result on singular vector subspace angle)
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An example
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Effect of truncation. Generated approximation subspace

AX + XA+MXM = c1c
⊤
1

▶ The low rank iterates naturally lose rank: if X (0) := X
(0)
1 X

(0)
1

⊤
(= 0), R(0) := R

(0)
1 S(0)R

(0)
1

⊤

with R
(0)
1 = c1 and R(0) = P(0) =: P

(0)
1 D(0)P

(0)
1

⊤
then

X
(1)
1 = [X

(0)
1 P

(0)
1 ] = c1; R

(1)
1 = [c1 AX

(1)
1 X

(1)
1 MX

(1)
1 ] = [c1 Ac1 c1 Mc1];

P
(1)
1 = [R

(1)
1 P

(0)
1 ] = [c1 Ac1 c1 Mc1 c1] X

(2)
1 = [X

(1)
1 P

(1)
1 ] = [c1 c1 Ac1 c1 Mc1 c1]

▶ The built space

Q =span
{
c1,Ac1,Mc1︸ ︷︷ ︸,A2c1,AMc1,MAc1,M

2c1︸ ︷︷ ︸,
A3c1,A

2Mc1,AMAc1,AM
2c1,MA2c1,MAMc1,M

2Ac1,M
3c1︸ ︷︷ ︸, · · ·},

Let Qk be the smallest subspace of Q containing the range of X
(k)
1 . Then

dim(Qk+1) ≤ dim(Qk) + 2k

▶ CG iteration is unable to capture the underlying space Qk

⇒, any standard truncation strategy on the factor X
(k+1)
1 will lose part of the

information contained in Qk
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2c1︸ ︷︷ ︸,
A3c1,A

2Mc1,AMAc1,AM
2c1,MA2c1,MAMc1,M

2Ac1,M
3c1︸ ︷︷ ︸, · · ·},

Let Qk be the smallest subspace of Q containing the range of X
(k)
1 . Then

dim(Qk+1) ≤ dim(Qk) + 2k

▶ CG iteration is unable to capture the underlying space Qk

⇒, any standard truncation strategy on the factor X
(k+1)
1 will lose part of the

information contained in Qk
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Effect of truncation on the iterates

Let xk = vec(Xk) (and similarly for the other variables). Truncation can be written as

x (k+1) = x (k+1)
ex + e

(k+1)
X , p(k+1) = p(k+1)

ex + e
(k+1)
P

(e
(k+1)
X , e

(k+1)
P local truncation errors)

TH: Let ∆k = max{∥e(k)
P ∥, ∥e(k)

X ∥, ∥e(k+1)
P ∥, ∥e(k+1)

X ∥} and also

δk = min{∥e(k)
P ∥, ∥e(k)

X ∥, ∥e(k+1)
P ∥, ∥e(k+1)

X ∥}. Then there exists η ∈ [0, 1] such that

η
1

∥A−1∥
δk

∥r (k+1)∥
≤ |r (k+1))⊤p(k)|

∥r (k+1)∥∥p(k)∥
≤ ∥A∥ ∆k

∥r (k+1)∥
,

and

βk = −
(r

(k+1)
ex )⊤Ap(k) − (Ae(k+1)

X )⊤Ap(k)

(p(k))⊤Ap(k)

Moreover,

|r (k+1))⊤r (k)|
∥r (k+1)∥∥r (k)∥

≤ γ
∆k

∥r (k+1)∥
γ = ∥Ap(k)∥ + (2|βk−1| + |βk−1αk |)∥Ap(k−1)∥ + ∥r (k+1)∥)/∥r (k)∥
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An example: AX + XA+MXM = c1c
⊤
1

A: 2D Laplace operator, M =pentadiag(−0.5,−1, 3.2,−1,−0.5), c1 random entries
Truncated CG residual norm (blue line) for different truncation values
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Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals
and residual and directions
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Wrap-up and Outlook

▶ Truncated CG in its youth (and happily behaves as such)

▶ Truncated CG behavior accepted in the “inexact” context (by necessity)

▶ Open problem: new truncation strategy that can capture the right information

▶ Open problem: new truncation strategy that better controls the rank

Visit: www.dm.unibo.it/˜simoncin
Email address: valeria.simoncini@unibo.it

Reference:
V. Simoncini and Yue Hao
Analysis of the truncated conjugate gradient method for linear matrix equations
pp. 1-24, Dipartimento di Matematica, Universita’ di Bologna, Feb. 2022. HAL archive hal-03579267
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Another example

A = diag(λ1, . . . , λn) with λi = λ1 +
(i−1)
(n−1) (λn − λ1)ρ

n−i , λ1 = 0.1, λn = 100

M: diagonal matrix with elements logarithmically distributed in [10−2, 100]
Convergence history of TCG for two truncation tolerances:
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Left: ρ = 0.4 Right: ρ = 0.8
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