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-
Multiterm linear matrix equation

A XBy 4+ A XBy+ ...+ AXBy = C

A; € R™" B; € R™™ X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transfor-
mation to a matrix-vector equation [...] allows us to use the considerable arsenal
of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970
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-
Multiterm linear matrix equation

A1 XBy + A XBy +...+ AlXB,=C

Kronecker form and back on track
Fixed point iterations (an “evergreen”...)
Projection-type methods = low rank approximation

Ad-hoc problem-dependent procedures

vvyVvyVvVvyy

etc.
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-
Multiterm linear matrix equation

A1 XBy + A XBy +...+ AlXB,=C

Kronecker form and back on track

Fixed point iterations (an “evergreen”...)

>
>
» Projection-type methods = low rank approximation
» Ad-hoc problem-dependent procedures

>

etc.
A sample of these methodologies on different problems:

& Stochastic PDEs

& PDEs on polygonal domains, IGA, spectral methods, etc
& Space-time PDEs

& All-at-once PDE-constrained optimization problem

& Bilinear control problems

_ V. Simoncini - On TCG for linear matrix equations 3/19



-
Multiterm linear matrix equation. Classical device

A1 XBy + A XBy +...+ A)XB, = C

Kronecker formulation| (B ® Ai+...+B] @ A))x=c & Ax=c

Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy,
Palitta, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

muiP ... m,P
Kronecker product : M® P = : : and vec(AXB) = (BT ® A)vec(X)

mmaP ... mpP
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-
Multiterm linear matrix equation. Classical device

Kronecker formulation

A1 XBy + A XBy +...+ A)XB, = C

(B;®A1+...+B;®Ag)x:c &S Ax=c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy,
Palitta, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

muiP ... m,P

Kronecker product : M® P = : : and vec(AXB) = (BT ® A)vec(X)

mmaP ... mpP

Current very active area of research
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N
CG matricization and truncation

* Matricization. Typically,

X(k"’l) = X(k) + O(kp(k) c R"Q = X(k‘H') = X(k) + OZkP(k) c R”X”
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N
CG matricization and truncation

* Matricization. Typically,

X(k"’l) = X(k) + O(kp(k) c R"Q = X(k‘H') = X(k) + OZkP(k) c R”X”

« Truncation. If X = X" (XINT with X low rank, and similarly for P4, then
X (k+1) _ Xl(k)(Xl(k))T + Ozkpl(k)(Pfk))T
> X*+1) jow rank:
XU =, PPl Y, VT

(but generally larger than at iteration k)
> Cure: Rank shrinking [X*, \/agP®] = XD x (et o x (0D (x (D) T

Implementation: 7(X(*+1)) acts on the SVD of X(k+1)

Alternative truncation criteria:
& Fix lower threshold tolerance & Fix maximum allowed rank
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|
Truncated matrix-oriented CG (TCG) for Kronecker form

Input: £(X) = A1XB1 + AxXBy + ...+ Ay X By, right-hand side C € R"*" in low-rank format.
Truncation operator 7.
Output: Matrix X € R"*" in low-rank format s.t. ||£(X) — C||¢/||C||r < tol

1. Xo=0, Ro=C, Py =Ry, Q= L(Po)

2. & = (P, Q), k=0 (X,Y) =tr(XTY)
3. While ||Rk||r > tol

4. wi = (Rk, Pi)/&k

5. X1 = Xk + wi P, Xir1 < T(Xes1)
6. Riy1 = C — L(Xk+1), Optionally:  Rii1 < T(Rk+1)
7. Bk = —(Ris1, Qi) /Ex
8. Pii1 = Riy1 + BkP, Pit1 < T(Pry1)
9. Qkr1 = L(Pky1)s Optionally:  Qui1 <+ T(Qxks1)
10. Ekr1 = (Prr1s Quy1)
11. k=k+1
12. end while
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Truncated matrix-oriented CG (TCG) for Kronecker form

Input: £(X) = A1XB1 + AxXBy + ...+ Ay X By, right-hand side C € R"*" in low-rank format.
Truncation operator 7.
Output: Matrix X € R"*" in low-rank format s.t. ||£(X) — C||¢/||C||r < tol

1. Xo=0, Ro=C, Py =Ry, Q= L(Po)

2. & = (P, Q), k=0 (X,Y) =tr(XTY)
3. While ||Rk||r > tol

4. wi = (Rk, Pi)/&k

5. X1 = Xk + wi P, Xir1 < T(Xes1)
6. Riy1 = C — L(Xk+1), Optionally:  Rii1 < T(Rk+1)
7. Bk = —(Ru+1, Qi) / €k
8. Pit1 = Riy1 + BiPx, Piy1 < T(Pi+1)
9. Qkr1 = L(Pky1)s Optionally:  Qui1 <+ T(Qxks1)

10. Ekr1 = (Prr1s Quy1)

11. k=k+1

12. end while

& lterates kept in factored form! Kressner and Tobler, '11
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L —
Exploring the iteration matrices

CG minimizes error in the energy norm = in the || X]||z norm )

||X‘ %: := trace (XTE(X)) with E(X) =A1XB; + A XBy+...+ AcXBy
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L —
Exploring the iteration matrices

CG minimizes error in the energy norm = in the || X]||z norm )

IIXH2L := trace (XTE(X)) with E(X) =A1XB; + A XBy+...+ AcXBy

Numerical evidence: As TCG iterations proceed

> Singular triplets of X(k) seem to converge in an orderly fashion to those of X*
» The numerical rank of X(kK) increases up to some point, then it decreases

(Kressner, Plesinger& Tobler, '14)
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|
Typical convergence behavior
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(Hao, 20, personal comm.)
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R
Typical iterate rank behavior
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(Simoncini & Hao, '22, also main reference for the following)
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L —
Towards an understanding.

Outline of our findings:

» No theoretical ground for a low rank throughout
» Approximation space wildly affected by truncation

» Loss of orthogonality properties leads to “relaxed Krylov” framework
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L —
Towards an understanding. A skinny setting. 1

Consider

AX + XA+ MXM = C
with A, M € R"*" spd, C € R"*" sym. low rank.

Note: This is equivalent to BT YD + D" YB + Y = F in the unknown Y
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L —
Towards an understanding. A skinny setting. 1

Consider

AX + XA+ MXM = C
with A, M € R"*" spd, C € R"*" sym. low rank.

Note: This is equivalent to BT YD + D" YB + Y = F in the unknown Y

Some properties:
> Solution X* € R"*" is symmetric
> Assuming [A1]| > ... > |\,

Amia| = min [IX" = X[ < [|X* = X]|
XeRnXn
rank(X)=m

for any X rank-m symmetric approximation to X*
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L —
Towards an understanding. A skinny setting. 2

Amii] =  min || X* = X| < [|IX* = X|| (%)
XE]R"X"
rank(X)=m

» The error norm || X* — X|| in () provides a, not necessarily sharp, upper bound for
the (m + 1)st singular value of X*
(Penzl, '00)

> Given a rank-m matrix X, (x) indicates that the error norm || X* — X|| cannot go
below |[Ay11]
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L —
Towards an understanding. A skinny setting. 2

Amii] =  min || X* = X| < [|IX* = X|| (%)
XE]R"X"
rank(X)=m

» The error norm || X* — X|| in () provides a, not necessarily sharp, upper bound for
the (m + 1)st singular value of X*
(Penzl, '00)

> Given a rank-m matrix X, (x) indicates that the error norm || X* — X|| cannot go
below |[Ay11]

We assume X* can be well approximated by a low rank matrix J

(see, e.g., Benner & Breiten, '13)
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L —
Singular values and error matrix

Let E®) = X* — X(K)_ We first note

IE®2 < [E®|lr < Ain(A)~21X* = X W
= the approximation of X(¥) to X* occurs in terms of singular values
That is,

As convergence takes place (i.e., |[X* — X(K)|| decreases) the leading singular triplets of
X() tend to match those of X J
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L —
Singular values and error matrix

Let E®) = X* — X(K)_ We first note

IE®2 < [E®|lr < Ain(A)~21X* = X W
= the approximation of X(¥) to X* occurs in terms of singular values
That is,

As convergence takes place (i.e., |[X* — X(K)|| decreases) the leading singular triplets of
X() tend to match those of X J

However, below the level of the error norm the singular values of the two matrices
X, and X can vary significantly J

(Formalization by using Wedin result on singular vector subspace angle)

_ V. Simoncini - On TCG for linear matrix equations 13/19



-
An example
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Singular values of X* and of X(%) and error threshold for each of the first 12 iterations
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-
Effect of truncation. Generated approximation subspace

AX 4+ XA + MXM = c;¢

. T T
> The low rank iterates naturally lose rank: if X© := x9x® (= 0), R© := R 5 R()

with R = ¢; and RO = ) = PO pOp® " then

XP = xO PO = ci; RY = [ AXW X MXY) = [ Act @ May);
PO =RV POl =[a1 Aci o Ma ] P =[Xx{V PV =[c1 &1 Act &1 Mey 1]
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Effect of truncation. Generated approximation subspace

AX 4+ XA + MXM = c;¢

. T T
> The low rank iterates naturally lose rank: if X© := x9x® (= 0), R© := R 5 R()
with R = ¢; and RO = ) = PO pOp® " then
XV = x© pOr= ¢ RM = AXY XD MXxD] = [ Act a1 Mai];

PF) = [R{l) P§0)] =[a Aci a Mc al X§2) = [Xl(l) P§1)] =[c1 c1 Ac a1 Ma ]
» The built space
Q =span{ci, Acy, Mcy, A%c1, AMci, MAcy, M?cy,
N——

Ay, AMey, AMAcy, AM? ¢, MA? ¢y, MAMcy, M?Acy, MBcy, -+ 3,

Let Qk be the smallest subspace of Q containing the range of Xl(k). Then
[ dim(Qu1) < dim(Qu) +2¢|
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-
Effect of truncation. Generated approximation subspace

AX 4+ XA + MXM = c;¢

. T T
> The low rank iterates naturally lose rank: if X© := x9x® (= 0), R© := R 5 R()

with R = ¢; and RO = ) = PO pOp® " then

XP = xO PO = ci; RY = [ AXW X MXY) = [ Act @ May);

P;l) = [R{l) P§0)] = [c1 Acy ¢1 Mcy c] X?) = [Xl(l) P§1)] = [c1 a Act c1 Mc ¢
» The built space

Q =span{ci, Acy, Mcy, A%c1, AMci, MAcy, M?cy,
N et

Ay, AMey, AMAcy, AM? ¢, MA? ¢y, MAMcy, M?Acy, MBcy, -+ 3,

Let Qk be the smallest subspace of Q containing the range of Xl(k). Then

[ dim(Qu1) < dim(Qu) +2¢|
» CG iteration is unable to capture the underlying space Qy

=, any standard truncation strategy on the factor Xl(kH) will lose part of the
information contained in Q
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N
Effect of truncation on the iterates

Let xx = vec(Xk) (and similarly for the other variables). Truncation can be written as

(k+1)

N (e e§(k+1), plktD) = plktD) 4 ol

k+1) (k+1 ,
(e)(<+ ), ef, ) Jocal truncation errors)
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N
Effect of truncation on the iterates

Let xx = vec(Xk) (and similarly for the other variables). Truncation can be written as

(k+1)

(kD) = plk+1) 4 gl

(k1) Xg:+1) + eg(k+1)’ p

k+1) (k+1 ,
(e)(<+ ), ef, ) Jocal truncation errors)

TH: Let Ak = max{|lel”], | el llep ™|, eS|} and also
0k = min{||e,(,k)||7 ||e)(<k)||7 ||ef,k+1)||, ||e§<k+1)|\}. Then there exists 7 € [0, 1] such that

1 Sk |r(KFDYT p(k)| - ||A||i
AT D] = e = D]
and k41 k41
5 _(r§X+ ))TAp(k) _ (Ae§<+ ))TAp(k)
k = (p(k))TAp(k)
Moreover,
(k+1))T (k) A
r r
||r("+1)?|||r<k):| - 7Hr(kfl)n 7 = 1AP® | + (21Be—1] + Bz AP + [ <911y /1AW
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——
An example: AX + XA+ MXM = c¢ic]

A: 2D Laplace operator, M =pentadiag(—0.5, -1, 3.2, —1, —0.5), ¢; random entries

Truncated CG residual norm (blue line) for different truncation values
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Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals
and residual and directions
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..
Wrap-up and Outlook

» Truncated CG in its youth (and happily behaves as such)

» Truncated CG behavior accepted in the “inexact” context (by necessity)

» Open problem: new truncation strategy that can capture the right information

» Open problem: new truncation strategy that better controls the rank

_ V. Simoncini - On TCG for linear matrix equations 18 /19



..
Wrap-up and Outlook

» Truncated CG in its youth (and happily behaves as such)

» Truncated CG behavior accepted in the “inexact” context (by necessity)

» Open problem: new truncation strategy that can capture the right information

» Open problem: new truncation strategy that better controls the rank

Visit: www.dm.unibo.it/ simoncin

Email address: valeria.simoncini@unibo.it

Reference:

V. Simoncini and Yue Hao

Analysis of the truncated conjugate gradient method for linear matrix equations

pp. 1-24, Dipartimento di Matematica, Universita' di Bologna, Feb. 2022. HAL archive hal-03579267
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-
Another example

A = diag(A1, ..., An) with A; = Ay + %(An “ )" A =01, A, =100
M: diagonal matrix with elements logarithmically distributed in [10~2, 10°]

Convergence history of TCG for two truncation tolerances:

100 T T T T T 10° T T T T T
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o o
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