On the truncated conjugate gradient method for linear matrix equations

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Multiterm linear matrix equation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970

Multiterm linear matrix equation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

- Kronecker form and back on track
- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.
sample of these methodologies on different problems:

8. Stochastic PDEs
\& PDEs on polygonal domains, IGA, spectral methods, etc
\& Space-time PDEs
9. All-at-once PDE-constrained optimization problem
\& Bilinear control problems

Multiterm linear matrix equation

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

- Kronecker form and back on track
- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

A sample of these methodologies on different problems:
\& Stochastic PDEs
\& PDEs on polygonal domains, IGA, spectral methods, etc
\& Space-time PDEs
\& All-at-once PDE-constrained optimization problem
\% Bilinear control problems

Multiterm linear matrix equation. Classical device

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Kronecker formulation $\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \Leftrightarrow \mathcal{A} \boldsymbol{x}=c$

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy, Palitta, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : $M \otimes P=\left[\begin{array}{ccc}m_{11} P & \ldots & m_{1 n} P \\ \vdots & \ddots & \vdots \\ m_{n 1} P & \ldots & m_{n n} P\end{array}\right] \quad$ and $\quad \operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)$

Multiterm linear matrix equation. Classical device

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

Kronecker formulation $\left(B_{1}^{\top} \otimes A_{1}+\ldots+B_{\ell}^{\top} \otimes A_{\ell}\right) \boldsymbol{x}=c \Leftrightarrow \mathcal{A} \boldsymbol{x}=c$

Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Kuerschner, Matthies, Nagy, Palitta, Onwunta, Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

Kronecker product : $M \otimes P=\left[\begin{array}{ccc}m_{11} P & \ldots & m_{1 n} P \\ \vdots & \ddots & \vdots \\ m_{n 1} P & \ldots & m_{n n} P\end{array}\right] \quad$ and $\quad \operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X)$

Current very active area of research

CG matricization and truncation

* Matricization. Typically,

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} \in \mathbb{R}^{n^{2}} \quad \Rightarrow \quad X^{(k+1)}=X^{(k)}+\alpha_{k} P^{(k)} \in \mathbb{R}^{n \times n}
$$

CG matricization and truncation

* Matricization. Typically,

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} \in \mathbb{R}^{n^{2}} \quad \Rightarrow \quad X^{(k+1)}=X^{(k)}+\alpha_{k} P^{(k)} \in \mathbb{R}^{n \times n}
$$

\star Truncation. If $X^{(k)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}$ with $X_{1}^{(k)}$ low rank, and similarly for $P^{(k)}$, then

$$
X^{(k+1)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}+\alpha_{k} P_{1}^{(k)}\left(P_{1}^{(k)}\right)^{\top}
$$

(but generally larger than at iteration k)
\rightarrow Cure: Rank shrinking $\left[X_{1}^{(k)} \cdot \sqrt{\alpha_{k}} P_{1}^{(k)}\right]$
Implementation:

CG matricization and truncation

* Matricization. Typically,

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} \in \mathbb{R}^{n^{2}} \quad \Rightarrow \quad X^{(k+1)}=X^{(k)}+\alpha_{k} P^{(k)} \in \mathbb{R}^{n \times n}
$$

\star Truncation. If $X^{(k)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}$ with $X_{1}^{(k)}$ low rank, and similarly for $P^{(k)}$, then

$$
X^{(k+1)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}+\alpha_{k} P_{1}^{(k)}\left(P_{1}^{(k)}\right)^{\top}
$$

- $X^{(k+1)}$ low rank:

$$
X^{(k+1)}=\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right]\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right]^{\top}
$$

(but generally larger than at iteration k)

- Cure: Rank shrinking $\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right] \Rightarrow X_{1}^{(k+1)}$

Implementation: $\mathcal{T}\left(X^{(k+1)}\right)$ acts on the SVD of $X^{(k+1)}$

CG matricization and truncation

* Matricization. Typically,

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} \in \mathbb{R}^{n^{2}} \quad \Rightarrow \quad X^{(k+1)}=X^{(k)}+\alpha_{k} P^{(k)} \in \mathbb{R}^{n \times n}
$$

\star Truncation. If $X^{(k)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}$ with $X_{1}^{(k)}$ low rank, and similarly for $P^{(k)}$, then

$$
X^{(k+1)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}+\alpha_{k} P_{1}^{(k)}\left(P_{1}^{(k)}\right)^{\top}
$$

- $X^{(k+1)}$ low rank:

$$
X^{(k+1)}=\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right]\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right]^{\top}
$$

(but generally larger than at iteration k)

- Cure: Rank shrinking $\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right] \Rightarrow X_{1}^{(k+1)} \quad X^{(k+1)} \approx X_{1}^{(k+1)}\left(X_{1}^{(k+1)}\right)^{\top}$

Implementation: $\mathcal{T}\left(X^{(k+1)}\right)$ acts on the SVD of $X^{(k+1)}$

CG matricization and truncation

* Matricization. Typically,

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} p^{(k)} \in \mathbb{R}^{n^{2}} \quad \Rightarrow \quad X^{(k+1)}=X^{(k)}+\alpha_{k} P^{(k)} \in \mathbb{R}^{n \times n}
$$

\star Truncation. If $X^{(k)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}$ with $X_{1}^{(k)}$ low rank, and similarly for $P^{(k)}$, then

$$
X^{(k+1)}=X_{1}^{(k)}\left(X_{1}^{(k)}\right)^{\top}+\alpha_{k} P_{1}^{(k)}\left(P_{1}^{(k)}\right)^{\top}
$$

- $X^{(k+1)}$ low rank:

$$
X^{(k+1)}=\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right]\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right]^{\top}
$$

(but generally larger than at iteration k)

- Cure: Rank shrinking $\left[X_{1}^{(k)}, \sqrt{\alpha_{k}} P_{1}^{(k)}\right] \Rightarrow X_{1}^{(k+1)} \quad X^{(k+1)} \approx X_{1}^{(k+1)}\left(X_{1}^{(k+1)}\right)^{\top}$

Implementation: $\mathcal{T}\left(X^{(k+1)}\right)$ acts on the SVD of $X^{(k+1)}$
Alternative truncation criteria:
\& Fix lower threshold tolerance
\& Fix maximum allowed rank

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $\mathcal{L}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format.
Truncation operator \mathcal{T}.
Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $\|\mathcal{L}(X)-C\|_{F} /\|C\|_{F} \leq t o l$

1. $X_{0}=0, R_{0}=C, P_{0}=R_{0}, Q_{0}=\mathcal{L}\left(P_{0}\right)$
2. $\xi_{0}=\left\langle P_{0}, Q_{0}\right\rangle, k=0$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

3. While $\left\|R_{k}\right\|_{F}>$ tol
4. $\omega_{k}=\left\langle R_{k}, P_{k}\right\rangle / \xi_{k}$
5. $X_{k+1}=X_{k}+\omega_{k} P_{k}$,
$X_{k+1} \leftarrow \mathcal{T}\left(X_{k+1}\right)$
6. $R_{k+1}=C-\mathcal{L}\left(X_{k+1}\right)$

Optionally: $\quad R_{k+1} \leftarrow \mathcal{T}\left(R_{k+1}\right)$
7. $\quad \beta_{k}=-\left\langle R_{k+1}, Q_{k}\right\rangle / \xi_{k}$
8. $\quad P_{k+1}=R_{k+1}+\beta_{k} P_{k}$,
$P_{k+1} \leftarrow \mathcal{T}\left(P_{k+1}\right)$
9. $Q_{k+1}=\mathcal{L}\left(P_{k+1}\right)$,

Optionally: $\quad Q_{k+1} \leftarrow \mathcal{T}\left(Q_{k+1}\right)$
10. $\quad \xi_{k+1}=\left\langle P_{k+1}, Q_{k+1}\right\rangle$
11. $k=k+1$
12. end while

Truncated matrix-oriented CG (TCG) for Kronecker form

Input: $\mathcal{L}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}$, right-hand side $C \in \mathbb{R}^{n \times n}$ in low-rank format.
Truncation operator \mathcal{T}.
Output: Matrix $X \in \mathbb{R}^{n \times n}$ in low-rank format s.t. $\|\mathcal{L}(X)-C\|_{F} /\|C\|_{F} \leq t o l$

1. $X_{0}=0, R_{0}=C, P_{0}=R_{0}, Q_{0}=\mathcal{L}\left(P_{0}\right)$
2. $\xi_{0}=\left\langle P_{0}, Q_{0}\right\rangle, k=0$

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

3. While $\left\|R_{k}\right\|_{F}>$ tol
4. $\omega_{k}=\left\langle R_{k}, P_{k}\right\rangle / \xi_{k}$
5. $X_{k+1}=X_{k}+\omega_{k} P_{k}$,
$X_{k+1} \leftarrow \mathcal{T}\left(X_{k+1}\right)$
6. $R_{k+1}=C-\mathcal{L}\left(X_{k+1}\right)$

Optionally: $\quad R_{k+1} \leftarrow \mathcal{T}\left(R_{k+1}\right)$
7. $\quad \beta_{k}=-\left\langle R_{k+1}, Q_{k}\right\rangle / \xi_{k}$
8. $\quad P_{k+1}=R_{k+1}+\beta_{k} P_{k}$,
$P_{k+1} \leftarrow \mathcal{T}\left(P_{k+1}\right)$
9. $Q_{k+1}=\mathcal{L}\left(P_{k+1}\right)$,

Optionally: $\quad Q_{k+1} \leftarrow \mathcal{T}\left(Q_{k+1}\right)$
10. $\quad \xi_{k+1}=\left\langle P_{k+1}, Q_{k+1}\right\rangle$
11. $k=k+1$
12. end while
\& Iterates kept in factored form!
Kressner and Tobler, '11

Exploring the iteration matrices

CG minimizes error in the energy norm $\quad \Rightarrow \quad$ in the $\|X\|_{\mathcal{L}}$ norm
$\|X\|_{\mathcal{L}}^{2}:=\operatorname{trace}\left(X^{\top} \mathcal{L}(X)\right)$ with $\mathcal{L}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} X B_{2}+\ldots+A_{\ell} X B_{\ell}$

Numerical evidence: As TCG iterations proceed

- Singular triplets of $X^{(k)}$ seem to converge in an orderly fashion to those of X^{*}
- The numerical rank of $X^{(k)}$ increases up to some point, then it decreases
(Kressner, Plesinger\& Tobler, '14)

Exploring the iteration matrices

CG minimizes error in the energy norm $\quad \Rightarrow \quad$ in the $\|X\|_{\mathcal{L}}$ norm
$\|X\|_{\mathcal{L}}^{2}:=\operatorname{trace}\left(X^{\top} \mathcal{L}(X)\right)$ with $\mathcal{L}(\boldsymbol{X})=A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}$

Numerical evidence: As TCG iterations proceed

- Singular triplets of $X^{(k)}$ seem to converge in an orderly fashion to those of X^{\star}
- The numerical rank of $X^{(k)}$ increases up to some point, then it decreases
(Kressner, Plesinger\& Tobler, '14)

Typical convergence behavior

(Hao, '20, personal comm.)

Typical iterate rank behavior

(Simoncini \& Hao, '22, also main reference for the following)

Towards an understanding.

Outline of our findings:

- No theoretical ground for a low rank throughout
- Approximation space wildly affected by truncation
- Loss of orthogonality properties leads to "relaxed Krylov" framework

Towards an understanding. A skinny setting. 1

Consider

$$
A X+X A+M X M=C
$$

with $A, M \in \mathbb{R}^{n \times n}$ spd, $C \in \mathbb{R}^{n \times n}$ sym. low rank.

Note: This is equivalent to $B^{T} Y D+D^{T} Y B+Y=F$ in the unknown Y

Some properties:

- Solution $X^{\star} \in \mathbb{R}^{n \times n}$ is symmetric
\Rightarrow Assuming $\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{n}\right|$,

for any \widetilde{X} rank- m symmetric approximation to X^{*}

Towards an understanding. A skinny setting. 1

Consider

$$
A X+X A+M X M=C
$$

with $A, M \in \mathbb{R}^{n \times n}$ spd, $C \in \mathbb{R}^{n \times n}$ sym. low rank.

Note: This is equivalent to $B^{T} Y D+D^{T} Y B+Y=F$ in the unknown Y

Some properties:

- Solution $X^{\star} \in \mathbb{R}^{n \times n}$ is symmetric
- Assuming $\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{n}\right|$,

$$
\left|\lambda_{m+1}\right|=\min _{\substack{x \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(X)=m}}\left\|X^{\star}-X\right\| \leq\left\|X^{\star}-\widetilde{X}\right\|
$$

for any \widetilde{X} rank $-m$ symmetric approximation to X^{\star}

Towards an understanding. A skinny setting. 2

$$
\begin{equation*}
\left|\lambda_{m+1}\right|=\min _{\substack{x \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(X)=m}}\left\|X^{\star}-X\right\| \leq\left\|X^{\star}-\widetilde{X}\right\| \tag{*}
\end{equation*}
$$

- The error norm $\left\|X^{\star}-\widetilde{X}\right\|$ in $(*)$ provides a, not necessarily sharp, upper bound for the $(m+1)$ st singular value of X^{\star} (Penzl, '00)
- Given a rank-m matrix $\widetilde{X},(*)$ indicates that the error norm $\left\|X^{\star}-\widetilde{X}\right\|$ cannot go below $\left|\lambda_{m+1}\right|$

Towards an understanding. A skinny setting. 2

$$
\begin{equation*}
\left|\lambda_{m+1}\right|=\min _{\substack{x \in \mathbb{R}^{n \times n} \\ \operatorname{rank}(X)=m}}\left\|X^{\star}-X\right\| \leq\left\|X^{\star}-\widetilde{X}\right\| \tag{*}
\end{equation*}
$$

- The error norm $\left\|X^{\star}-\widetilde{X}\right\|$ in $(*)$ provides a, not necessarily sharp, upper bound for the $(m+1)$ st singular value of X^{\star} (Penzl, '00)
- Given a rank-m matrix $\widetilde{X},(*)$ indicates that the error norm $\left\|X^{\star}-\widetilde{X}\right\|$ cannot go below $\left|\lambda_{m+1}\right|$

We assume X^{\star} can be well approximated by a low rank matrix
(see, e.g., Benner \& Breiten, '13)

Singular values and error matrix

Let $E^{(k)}=X^{\star}-X^{(k)}$. We first note

$$
\left\|E^{(k)}\right\|_{2} \leq\left\|E^{(k)}\right\|_{F} \leq \lambda_{\min }(\mathcal{A})^{-\frac{1}{2}}\left\|X^{\star}-X^{(k)}\right\|_{\mathcal{L}}
$$

\Rightarrow the approximation of $X^{(k)}$ to X^{\star} occurs in terms of singular values
That is,

As convergence takes place (i.e., $\left\|X^{\star}-X^{(k)}\right\|$ decreases) the leading singular triplets of $X^{(k)}$ tend to match those of X

However, below the level of the error norm the singular values of the two matrices X_{\star} and $X^{(k)}$ can vary significantly

Singular values and error matrix

Let $E^{(k)}=X^{\star}-X^{(k)}$. We first note

$$
\left\|E^{(k)}\right\|_{2} \leq\left\|E^{(k)}\right\|_{F} \leq \lambda_{\min }(\mathcal{A})^{-\frac{1}{2}}\left\|X^{\star}-X^{(k)}\right\|_{\mathcal{L}}
$$

\Rightarrow the approximation of $X^{(k)}$ to X^{\star} occurs in terms of singular values
That is,

As convergence takes place (i.e., $\left\|X^{\star}-X^{(k)}\right\|$ decreases) the leading singular triplets of $X^{(k)}$ tend to match those of X

However, below the level of the error norm the singular values of the two matrices X_{\star} and $X^{(k)}$ can vary significantly
(Formalization by using Wedin result on singular vector subspace angle)

An example

Singular values of X^{\star} and of $X^{(k)}$ and error threshold for each of the first 12 iterations

Effect of truncation. Generated approximation subspace

$$
A X+X A+M X M=c_{1} c_{1}^{\top}
$$

- The low rank iterates naturally lose rank: if $X^{(0)}:=X_{1}^{(0)} X_{1}^{(0)^{\top}}(=0), R^{(0)}:=R_{1}^{(0)} S^{(0)} R_{1}^{(0)}{ }^{\top}$ with $R_{1}^{(0)}=c_{1}$ and $R^{(0)}=P^{(0)}=: P_{1}^{(0)} D^{(0)} P_{1}^{(0)^{\top}}$ then

$$
\begin{aligned}
& \mathbf{X}_{1}^{(1)}=\left[\begin{array}{lll}
X_{1}^{(0)} & P_{1}^{(0)}
\end{array}\right]=c_{1} ; \quad R_{1}^{(1)}=\left[\begin{array}{llll}
c_{1} & A X_{1}^{(1)} & X_{1}^{(1)} M X_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{llll}
c_{1} & A c_{1} & c_{1} & M c_{1}
\end{array}\right] ; \\
& P_{1}^{(1)}=\left[\begin{array}{lllll}
R_{1}^{(1)} & P_{1}^{(0)}
\end{array}\right]=\left[\begin{array}{lllll}
c_{1} & A c_{1} & c_{1} & M c_{1} & c_{1}
\end{array}\right] \quad \mathbf{X}_{1}^{(2)}=\left[\begin{array}{llll}
X_{1}^{(1)} & P_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{lllllll}
c_{1} & c_{1} & A c_{1} & c_{1} & M c_{1} & c_{1}
\end{array}\right]
\end{aligned}
$$

\Rightarrow The built space

Let \mathbb{Q}_{k} be the smallest subspace of \mathbb{Q} containing the range of $X_{1}^{(k)}$. Then

Effect of truncation. Generated approximation subspace

$$
A X+X A+M X M=c_{1} c_{1}^{\top}
$$

- The low rank iterates naturally lose rank: if $X^{(0)}:=X_{1}^{(0)} X_{1}^{(0)^{\top}}(=0), R^{(0)}:=R_{1}^{(0)} S^{(0)} R_{1}^{(0)}{ }^{\top}$ with $R_{1}^{(0)}=c_{1}$ and $R^{(0)}=P^{(0)}=: P_{1}^{(0)} D^{(0)} P_{1}^{(0)^{\top}}$ then

$$
\begin{aligned}
& \mathbf{X}_{1}^{(1)}=\left[\begin{array}{ll}
X_{1}^{(0)} & P_{1}^{(0)}
\end{array}\right]=c_{1} ; \quad R_{1}^{(1)}=\left[\begin{array}{llll}
c_{1} & A X_{1}^{(1)} & X_{1}^{(1)} M X_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{llll}
c_{1} & A c_{1} & c_{1} & M c_{1}
\end{array}\right] ; \\
& P_{1}^{(1)}=\left[\begin{array}{lllll}
R_{1}^{(1)} & P_{1}^{(0)}
\end{array}\right]=\left[\begin{array}{lllll}
c_{1} A c_{1} & c_{1} & M c_{1} & c_{1}
\end{array}\right] \quad \mathbf{X}_{1}^{(2)}=\left[\begin{array}{llll}
X_{1}^{(1)} & P_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{lllllll}
c_{1} & c_{1} & A c_{1} & c_{1} & M c_{1} & c_{1}
\end{array}\right]
\end{aligned}
$$

- The built space

$$
\begin{aligned}
\mathbb{Q}= & \operatorname{span}\{c_{1}, \underbrace{A c_{1}, M c_{1}}, \underbrace{A^{2} c_{1}, A M c_{1}, M A c_{1}, M^{2} c_{1}}, \\
& \underbrace{A^{3} c_{1}, A^{2} M c_{1}, A M A c_{1}, A M^{2} c_{1}, M A^{2} c_{1}, M A M c_{1}, M^{2} A c_{1}, M^{3} c_{1}}, \cdots\},
\end{aligned}
$$

Let \mathbb{Q}_{k} be the smallest subspace of \mathbb{Q} containing the range of $X_{1}^{(k)}$. Then

$$
\operatorname{dim}\left(\mathbb{Q}_{k+1}\right) \leq \operatorname{dim}\left(\mathbb{Q}_{k}\right)+2^{k}
$$

CG iteration is unable to capture the underlying space \mathbb{Q}_{k} , any standard truncation strategy on the factor X_{1}

Effect of truncation. Generated approximation subspace

$$
A X+X A+M X M=c_{1} c_{1}^{\top}
$$

- The low rank iterates naturally lose rank: if $X^{(0)}:=X_{1}^{(0)} X_{1}^{(0)^{\top}}(=0), R^{(0)}:=R_{1}^{(0)} S^{(0)} R_{1}^{(0)}{ }^{\top}$ with $R_{1}^{(0)}=c_{1}$ and $R^{(0)}=P^{(0)}=: P_{1}^{(0)} D^{(0)} P_{1}^{(0)^{\top}}$ then

$$
\begin{aligned}
& \mathbf{X}_{1}^{(1)}=\left[\begin{array}{ll}
X_{1}^{(0)} & P_{1}^{(0)}
\end{array}\right]=c_{1} ; \quad R_{1}^{(1)}=\left[\begin{array}{llll}
c_{1} & A X_{1}^{(1)} & X_{1}^{(1)} M X_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{llll}
c_{1} & A c_{1} & c_{1} & M c_{1}
\end{array}\right] ; \\
& P_{1}^{(1)}=\left[\begin{array}{llll}
R_{1}^{(1)} & P_{1}^{(0)}
\end{array}\right]=\left[\begin{array}{lllll}
c_{1} A c_{1} & c_{1} M c_{1} & c_{1}
\end{array}\right] \quad \mathbf{X}_{1}^{(2)}=\left[\begin{array}{llll}
X_{1}^{(1)} & P_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{llllll}
c_{1} & c_{1} & A c_{1} & c_{1} & M c_{1} & c_{1}
\end{array}\right]
\end{aligned}
$$

- The built space

$$
\begin{aligned}
\mathbb{Q}= & \operatorname{span}\{c_{1}, \underbrace{A c_{1}, M c_{1}}, \underbrace{A^{2} c_{1}, A M c_{1}, M A c_{1}, M^{2} c_{1}}, \\
& \underbrace{A^{3} c_{1}, A^{2} M c_{1}, A M A c_{1}, A M^{2} c_{1}, M A^{2} c_{1}, M A M c_{1}, M^{2} A c_{1}, M^{3} c_{1}}, \cdots\},
\end{aligned}
$$

Let \mathbb{Q}_{k} be the smallest subspace of \mathbb{Q} containing the range of $X_{1}^{(k)}$. Then

$$
\operatorname{dim}\left(\mathbb{Q}_{k+1}\right) \leq \operatorname{dim}\left(\mathbb{Q}_{k}\right)+2^{k}
$$

- CG iteration is unable to capture the underlying space \mathbb{Q}_{k}
\Rightarrow, any standard truncation strategy on the factor $X_{1}^{(k+1)}$ will lose part of the information contained in \mathbb{Q}_{k}

Effect of truncation on the iterates

Let $x_{k}=\operatorname{vec}\left(X_{k}\right)$ (and similarly for the other variables). Truncation can be written as

$$
x^{(k+1)}=x_{e x}^{(k+1)}+\boldsymbol{e}_{X}^{(k+1)}, \quad p^{(k+1)}=p_{e x}^{(k+1)}+\boldsymbol{e}_{P}^{(k+1)}
$$

$\left(\boldsymbol{e}_{X}^{(k+1)}, \boldsymbol{e}_{P}^{(k+1)}\right.$ local truncation errors)

and

Moreover,

Effect of truncation on the iterates

Let $x_{k}=\operatorname{vec}\left(X_{k}\right)$ (and similarly for the other variables). Truncation can be written as

$$
x^{(k+1)}=x_{e x}^{(k+1)}+\boldsymbol{e}_{X}^{(k+1)}, \quad p^{(k+1)}=p_{e x}^{(k+1)}+\boldsymbol{e}_{P}^{(k+1)}
$$

$\left(\boldsymbol{e}_{X}^{(k+1)}, \boldsymbol{e}_{P}^{(k+1)}\right.$ local truncation errors)

TH: Let $\Delta_{k}=\max \left\{\left\|\boldsymbol{e}_{P}^{(k)}\right\|,\left\|\boldsymbol{e}_{X}^{(k)}\right\|,\left\|\boldsymbol{e}_{P}^{(k+1)}\right\|,\left\|\boldsymbol{e}_{X}^{(k+1)}\right\|\right\}$ and also $\delta_{k}=\min \left\{\left\|\boldsymbol{e}_{P}^{(k)}\right\|,\left\|\boldsymbol{e}_{X}^{(k)}\right\|,\left\|\boldsymbol{e}_{P}^{(k+1)}\right\|,\left\|\boldsymbol{e}_{X}^{(k+1)}\right\|\right\}$. Then there exists $\eta \in[0,1]$ such that

$$
\eta \frac{1}{\left\|\mathcal{A}^{-1}\right\|} \frac{\delta_{k}}{\left\|r^{(k+1)}\right\|} \leq \frac{\left.\mid r^{(k+1)}\right)^{\top} p^{(k)} \mid}{\left\|r^{(k+1)}\right\|\left\|p^{(k)}\right\|} \leq\|\mathcal{A}\| \frac{\Delta_{k}}{\left\|r^{(k+1)}\right\|},
$$

and

$$
\beta_{k}=-\frac{\left(r_{e x}^{(k+1)}\right)^{\top} \mathcal{A} p^{(k)}-\left(\mathcal{A} e_{X}^{(k+1)}\right)^{\top} \mathcal{A} p^{(k)}}{\left(p^{(k)}\right)^{\top} \mathcal{A} p^{(k)}}
$$

Moreover,

$$
\left.\frac{\left.\mid r^{(k+1)}\right)^{\top} r^{(k)} \mid}{\left\|r^{(k+1)}\right\|\left\|r^{(k)}\right\|} \leq \gamma \frac{\Delta_{k}}{\left\|r^{(k+1)}\right\|} \quad \gamma=\left\|\mathcal{A} p^{(k)}\right\|+\left(2\left|\beta_{k-1}\right|+\left|\beta_{k-1} \alpha_{k}\right|\right)\left\|\mathcal{A} p^{(k-1)}\right\|+\left\|r^{(k+1)}\right\|\right) /\left\|r^{(k)}\right\|
$$

An example: $A X+X A+M X M=c_{1} c_{1}^{\top}$

A: 2D Laplace operator, $M=$ pentadiag $(-0.5,-1,3.2,-1,-0.5), c_{1}$ random entries Truncated CG residual norm (blue line) for different truncation values

Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals and residual and directions

Wrap-up and Outlook

- Truncated CG in its youth (and happily behaves as such)
- Truncated CG behavior accepted in the "inexact" context (by necessity)
- Open problem: new truncation strategy that can capture the right information
- Open problem: new truncation strategy that better controls the rank

Visit: www.dm.unibo.it/ simoncin
Email address: valoria simoncini@unibo.it

Reference:
V. Simoncini and Yue Hao

Analysis of the truncated conjugate gradient method for linear matrix equations
pp. 1-24, Dipartimento di Matematica, Universita' di Bologna, Feb. 2022. HAL archive hal-03579267

Wrap-up and Outlook

- Truncated CG in its youth (and happily behaves as such)
- Truncated CG behavior accepted in the "inexact" context (by necessity)
- Open problem: new truncation strategy that can capture the right information
- Open problem: new truncation strategy that better controls the rank

Visit: www.dm.unibo.it/ simoncin
Email address: valeria.simoncini@unibo.it

Reference:

V. Simoncini and Yue Hao

Analysis of the truncated conjugate gradient method for linear matrix equations pp. 1-24, Dipartimento di Matematica, Universita' di Bologna, Feb. 2022. HAL archive hal-03579267

Another example

$A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i}=\lambda_{1}+\frac{(i-1)}{(n-1)}\left(\lambda_{n}-\lambda_{1}\right) \rho^{n-i}, \lambda_{1}=0.1, \quad \lambda_{n}=100$
M : diagonal matrix with elements logarithmically distributed in $\left[10^{-2}, 10^{0}\right]$
Convergence history of TCG for two truncation tolerances:

Left: $\rho=0.4$

Right: $\rho=0.8$

