Numerical solution of a class of quasi-linear matrix equations

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Joint works with M. Porcelli (UniBo), Y. Hao (Inst. Applied Physics \& Comput. Math., Beijing)

The quasi-linear matrix equation problem

Find $X \in \mathbb{R}^{n \times m}$ such that

$$
A X+X B+f(X) C=D
$$

$-f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ linear or nonlinear function

- $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$, and $C, D \in \mathbb{R}^{n \times m}$

For certain f, it may occur that $m=n$.

The quasi-linear matrix equation problem

Find $X \in \mathbb{R}^{n \times m}$ such that

$$
A X+X B+f(X) C=D
$$

$-f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ linear or nonlinear function

- $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$, and $C, D \in \mathbb{R}^{n \times m}$

For certain f, it may occur that $m=n$.

General hypothesis:
A and $-B$ have no common eigenvalues, so that $\mathcal{L}: X \mapsto A X+X B$ is invertible

Building up complexity in f

$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ linear or nonlinear function
0. Exception. $f(X)=\sigma_{j} X, j=1, \ldots, s$

1. f linear:

$$
f(X)=\operatorname{trace}(H X), \quad \text { for some } \quad H
$$

For instance:
$\begin{array}{llr}\star & H & =I \\ \star & f(X)=\operatorname{trace}(X) \\ \star & H & =u v^{T}\end{array} \quad f(X)=v^{T} X u$
2. f nonlinear. Composition of

- Linear with nonlinear, e.g.

$$
f(X)=\operatorname{trace}(\exp (-X))
$$

- Nonlinear with linear, e.g.

Building up complexity in f

$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ linear or nonlinear function
0. Exception. $f(X)=\sigma_{j} X, j=1, \ldots, s$

1. f linear:

$$
f(X)=\operatorname{trace}(H X), \quad \text { for some } \quad H
$$

For instance:
$\star \quad H=I \quad f(X)=\operatorname{trace}(X)$
$\star \quad H=u v^{T} \quad f(X)=v^{T} X u$
2. f nonlinear. Composition of

- Linear with nonlinear, e.g.

$$
f(X)=\operatorname{trace}(\exp (-X))
$$

- Nonlinear with linear, e.g.

$$
f(X)=\exp (-\operatorname{trace}(X))
$$

Building up complexity in f

$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ linear or nonlinear function
0. Exception. $f(X)=\sigma_{j} X, j=1, \ldots, s$

1. f linear:

$$
f(X)=\operatorname{trace}(H X), \quad \text { for some } \quad H
$$

For instance:
$\star \quad H=I \quad f(X)=\operatorname{trace}(X)$
$\star \quad H=u v^{T} \quad f(X)=v^{T} X u$
2. f nonlinear. Composition of

- Linear with nonlinear, e.g.

$$
f(X)=\operatorname{trace}(\exp (-X))
$$

- Nonlinear with linear, e.g.

$$
f(X)=\exp (-\operatorname{trace}(X))
$$

The linear problem. 1

Let

$$
A X+X B+f(X) C=D
$$

(•)
with $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ a linear function
Closed form solution:
Let M, N be the solutions to the Sylvester equations $A M+M B=D$ and $A N+N B=C$, resp. Assume that $1-f(N) \neq 0$. Then the solution to (\bullet) is given by

$$
X=M+\sigma N, \quad \sigma=\frac{f(M)}{1-f(N)}
$$

$1-f(N)=0$ leads to either infinite or no solutions.

Instead of (\bullet) we can use the mathematically equivalent equation
(more appropriate for small rather than large scale problems)

The linear problem. 1

Let

$$
A X+X B+f(X) C=D
$$

with $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ a linear function

Closed form solution:

Let M, N be the solutions to the Sylvester equations $A M+M B=D$ and $A N+N B=C$, resp. Assume that $1-f(N) \neq 0$. Then the solution to (\bullet) is given by

$$
X=M+\sigma N, \quad \sigma=\frac{f(M)}{1-f(N)}
$$

$1-f(N)=0$ leads to either infinite or no solutions.
Instead of (\bullet) we can use the mathematically equivalent equation
(more appropriate for small rather than large scale problems)

The linear problem. 1

Let

$$
A X+X B+f(X) C=D
$$

with $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ a linear function

Closed form solution:

Let M, N be the solutions to the Sylvester equations $A M+M B=D$ and $A N+N B=C$, resp. Assume that $1-f(N) \neq 0$. Then the solution to (\bullet) is given by

$$
X=M+\sigma N, \quad \sigma=\frac{f(M)}{1-f(N)}
$$

$1-f(N)=0$ leads to either infinite or no solutions.
Instead of (\bullet) we can use the mathematically equivalent equation

$$
X=M+f(X) N, \quad N=-\mathcal{L}^{-1}(C), M=\mathcal{L}^{-1}(D)
$$

(more appropriate for small rather than large scale problems)

The linear problem. 2

Some examples:

$$
N=-\mathcal{L}^{-1}(C), M=\mathcal{L}^{-1}(D)
$$

1. $A X+X B+\operatorname{trace}(X) C=D$. Then

$$
X=M+\sigma N, \quad \sigma=\frac{\operatorname{trace}(M)}{1-\operatorname{trace}(N)}
$$

2. $A X+X B+\left(v^{\top} X u\right) M=C$. Then

The linear problem. 2

Some examples:

$$
N=-\mathcal{L}^{-1}(C), M=\mathcal{L}^{-1}(D)
$$

1. $A X+X B+\operatorname{trace}(X) C=D$. Then

$$
X=M+\sigma N, \quad \sigma=\frac{\operatorname{trace}(M)}{1-\operatorname{trace}(N)}
$$

2. $A X+X B+\left(v^{T} X u\right) M=C$. Then

$$
X=M+\sigma N, \quad \sigma=\frac{v^{\top} M u}{1-v^{\top} N u}
$$

The linear problem. 3

\Rightarrow The approach also solves a seemingly unrelated problem
Let

$$
A X+X B+C_{1} X C_{2}=D, \quad C_{1}, C_{2} \quad \text { rank-one matrices }
$$

Letting $C_{i}=u_{i} v_{i}^{T}, i=1,2$, then

$$
C_{1} X C_{2}=u_{1} v_{1}^{\top} X u_{2} v_{2}^{\top}=\left(v_{1}^{\top} X u_{2}\right) u_{1} v_{2}^{\top} \equiv f(X) C
$$

\& The closed form is just the (vector) Sherman-Morrison formula in disguise (for general low-rank C_{1}, C_{2}, see Y. Hao, V.Simoncini, 2021)

Other linear generalizations

- Multiterm case

$$
A X+X B+f_{1}(X) C_{1}+\ldots+f_{\ell}(X) C_{\ell}=D
$$

with $f_{j}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}, j=1, \ldots, \ell$ linear functions

Closed form solution:

where $\sigma_{j}=f_{j}(X)$ are determined by solving the $\ell \times \ell$ linear system

(M.Porcelli, V.S., LAA 2023), application to solid mechanics

Other linear generalizations

- Multiterm case

$$
A X+X B+f_{1}(X) C_{1}+\ldots+f_{\ell}(X) C_{\ell}=D
$$

with $f_{j}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}, j=1, \ldots, \ell$ linear functions

Closed form solution:

$$
X=M+\sum_{i=1}^{\ell} \sigma_{i} N_{i}
$$

where $\sigma_{j}=f_{j}(X)$ are determined by solving the $\ell \times \ell$ linear system

$$
\left[\begin{array}{cccc}
1-f_{1}\left(N_{1}\right) & -f_{1}\left(N_{2}\right) & \cdots & -f_{1}\left(N_{\ell}\right) \\
-f_{2}\left(N_{1}\right) & 1-f_{2}\left(N_{2}\right) & \cdots & -f_{2}\left(N_{\ell}\right) \\
\vdots & \vdots & \ddots & \vdots \\
-f_{\ell}\left(N_{1}\right) & \cdots & \cdots & 1-f_{\ell}\left(N_{\ell}\right)
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{\ell}
\end{array}\right]=\left[\begin{array}{c}
f_{1}(M) \\
\vdots \\
f_{\ell}(M)
\end{array}\right] \Leftrightarrow(I-F) \boldsymbol{\sigma}=\mathbf{f}
$$

(M.Porcelli, V.S., LAA 2023), application to solid mechanics

First examples of nonlinear setting

$$
f(X)=\operatorname{trace}\left(X^{p}\right), \quad \text { with } \quad p \in \mathbb{N}, p>1
$$

The square power:

$$
\begin{aligned}
f(X) & =\operatorname{trace}\left(X^{2}\right)=\operatorname{trace}((M+f(X) N)(M+f(X) N)) \\
& =f(M)+2 \operatorname{trace}(M N) f(X)+f(X)^{2} f(N)
\end{aligned}
$$

second order scalar equation in $f(X)$ with roots r_{1}, r_{2}.

First examples of nonlinear setting

$$
f(X)=\operatorname{trace}\left(X^{p}\right), \quad \text { with } \quad p \in \mathbb{N}, p>1
$$

The square power:

$$
\begin{aligned}
f(X) & =\operatorname{trace}\left(X^{2}\right)=\operatorname{trace}((M+f(X) N)(M+f(X) N)) \\
& =f(M)+2 \operatorname{trace}(M N) f(X)+f(X)^{2} f(N)
\end{aligned}
$$

second order scalar equation in $f(X)$ with roots r_{1}, r_{2}.
Closed form:

$$
X_{(1)}=M+r_{1} N, \quad X_{(2)}=M+r_{2} N
$$

\Rightarrow Similar procedure for, e.g., $f(X)=\|X\|_{F}^{2}=\operatorname{trace}\left(X^{\top} X\right)$
\qquad

First examples of nonlinear setting

$$
f(X)=\operatorname{trace}\left(X^{p}\right), \quad \text { with } \quad p \in \mathbb{N}, p>1
$$

The square power:

$$
\begin{aligned}
f(X) & =\operatorname{trace}\left(X^{2}\right)=\operatorname{trace}((M+f(X) N)(M+f(X) N)) \\
& =f(M)+2 \operatorname{trace}(M N) f(X)+f(X)^{2} f(N)
\end{aligned}
$$

second order scalar equation in $f(X)$ with roots r_{1}, r_{2}.
Closed form:

$$
X_{(1)}=M+r_{1} N, \quad X_{(2)}=M+r_{2} N
$$

- Similar procedure for, e.g., $f(X)=\|X\|_{F}^{2}=\operatorname{trace}\left(X^{\top} X\right)$
\Rightarrow For $f(X)=\operatorname{trace}\left(X^{-1}\right), M=\boldsymbol{m}_{1} \boldsymbol{m}_{2}^{\top}$ rank-one and N invertible.

First examples of nonlinear setting

$$
f(X)=\operatorname{trace}\left(X^{p}\right), \quad \text { with } \quad p \in \mathbb{N}, p>1
$$

The square power:

$$
\begin{aligned}
f(X) & =\operatorname{trace}\left(X^{2}\right)=\operatorname{trace}((M+f(X) N)(M+f(X) N)) \\
& =f(M)+2 \operatorname{trace}(M N) f(X)+f(X)^{2} f(N)
\end{aligned}
$$

second order scalar equation in $f(X)$ with roots r_{1}, r_{2}.
Closed form:

$$
X_{(1)}=M+r_{1} N, \quad X_{(2)}=M+r_{2} N
$$

- Similar procedure for, e.g., $f(X)=\|X\|_{F}^{2}=\operatorname{trace}\left(X^{T} X\right)$
- For $f(X)=\operatorname{trace}\left(X^{-1}\right), M=\boldsymbol{m}_{1} \boldsymbol{m}_{2}^{T}$ rank-one and N invertible.

If the matrix equation $X=M+f(X) N$ admits nonsingular solutions, then these are $X_{(i)}=M+r_{i} N, i=1,2,3$ where r_{i} are the roots of

$$
r^{3}+\eta_{2} r^{2}+\eta_{1} r+\eta_{0}=0
$$

with $\eta_{2}=\boldsymbol{m}_{2}^{T} N^{-1} \boldsymbol{m}_{1}, \eta_{1}=-f(N)$ and $\eta_{0}=\eta_{1} \eta_{2}+\boldsymbol{m}_{2}^{T} N^{-2} \boldsymbol{m}_{1}$

The general linear-nonlinear

$$
f(X)=\phi(\psi(X)), \quad \phi: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, \quad \psi: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}
$$

where ϕ is linear, and ψ is a (nonlinear) matrix function
Note: in the following, $\phi(Y)=\operatorname{trace}(Y) \quad$ E.g., $f(X)=\operatorname{trace}(\exp (-X))$ Use

$$
X=M+f(X) N
$$

and assume N diag.ble, $N=Q \wedge Q^{-1}$. Then

$$
Q^{-1} X Q=Q^{-1} M Q+f(X) \wedge,
$$

Note that (for trace invariance)

$$
f(X)=\operatorname{trace}(\psi(X))=\operatorname{trace}\left(\psi\left(Q^{-1} X Q\right)\right)=f\left(Q^{-1} X Q\right)
$$

$$
X_{1}=M_{1}+f\left(X_{1}\right) \wedge, \quad X_{1} \equiv Q^{-1} X Q, M_{1} \equiv Q^{-1} M Q
$$

The general linear-nonlinear

$$
f(X)=\phi(\psi(X)), \quad \phi: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, \quad \psi: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}
$$

where ϕ is linear, and ψ is a (nonlinear) matrix function
Note: in the following, $\phi(Y)=\operatorname{trace}(Y)$
E.g., $f(X)=\operatorname{trace}(\exp (-X))$

Use

$$
X=M+f(X) N
$$

and assume N diag.ble, $N=Q \wedge Q^{-1}$. Then

$$
Q^{-1} X Q=Q^{-1} M Q+f(X) \Lambda,
$$

Note that (for trace invariance)

$$
f(X)=\operatorname{trace}(\psi(X))=\operatorname{trace}\left(\psi\left(Q^{-1} X Q\right)\right)=f\left(Q^{-1} X Q\right)
$$

so that

$$
X_{1}=M_{1}+f\left(X_{1}\right) \Lambda, \quad X_{1} \equiv Q^{-1} X Q, M_{1} \equiv Q^{-1} M Q
$$

\Rightarrow Only the diagonal is updated!

Numerical solution

Fixed point iteration:

$$
X_{1}^{(k+1)}=M_{1}+f\left(X_{1}^{(k)}\right) \Lambda, \quad \text { for some } X_{1}^{(0)}
$$

Definiteness properties

Let $M_{1} \succ 0$ and $\Lambda \succeq 0$, and let $X_{1}^{(0)}=M_{1}$
i) If f is a nonnegative function satisfying $f(X) \leq f(Y)$ for $Y \succeq X$, then $X_{1}^{(k+1)} \succeq X_{1}^{(k)}$ for
ii) If f is a nonnegative function satisfying $f(X) \geq f(Y)$ for $Y \succeq X$, then the iterates $X_{1}^{(k+1)}-X_{1}^{(k)}$ alternate definiteness at each k

Numerical solution

Fixed point iteration:

$$
X_{1}^{(k+1)}=M_{1}+f\left(X_{1}^{(k)}\right) \Lambda, \quad \text { for some } X_{1}^{(0)}
$$

Definiteness properties:
Let $M_{1} \succ 0$ and $\Lambda \succeq 0$, and let $X_{1}^{(0)}=M_{1}$.
i) If f is a nonnegative function satisfying $f(X) \leq f(Y)$ for $Y \succeq X$, then $X_{1}^{(k+1)} \succeq X_{1}^{(k)}$ for all $k s$
ii) If f is a nonnegative function satisfying $f(X) \geq f(Y)$ for $Y \succeq X$, then the iterates $X_{1}^{(k+1)}-X_{1}^{(k)}$ alternate definiteness at each k

An example

Convergence of the ($n / 2, n / 2$) diagonal element of $X_{1}^{(k)}$

Left: $f(X)=\operatorname{trace}\left(X^{1 / 2}\right)$

Right: $f(X)=\operatorname{trace}(\exp (-X))$

Convergence to exact solution X_{1}^{\star}

Consider $f(X)=\operatorname{trace}(\exp (-X))$

Let $E^{(k)}=X_{1}^{(k)}-X_{1}^{\star}$

Ostrowski-type theorem:
Assume $M_{1} \succeq 0$ and $\Lambda \succeq 0$.
If $\operatorname{trace}\left(\Lambda \exp \left(-X_{1}^{\star}\right)\right)=\sigma<1$ then there exist an $X_{1}^{(0)}$ and a $\sigma_{1} \in[0,1)$ such that

$$
\left\|E^{(k+1)}\right\| \leq \sigma_{1}\left\|E^{(k)}\right\|
$$

for $k \geq 0$, for any matrix norm $\|\cdot\|$.

Note: A corresponding result holds for $f(X)=\operatorname{trace}\left(X^{\frac{1}{2}}\right)$

An example

Consider:
\& $X^{\star}=\sqrt{\alpha} G$
of $G=\left(G_{0}^{T} G_{0}\right)^{\frac{1}{2}}$, with $G_{0}=\operatorname{randn}(\mathrm{n}, \mathrm{n})$ (Matlab seed $\left.\mathrm{rng}(1)\right)$
\& N similar to G, and $M=X^{\star}-f\left(X^{\star}\right) N$
$\Rightarrow \alpha$ influences the magnitude of the Frechet derivative

$$
X_{1}^{(k+1)}=M_{1}+f\left(X_{1}^{(k)}\right) \Lambda, \quad \text { for } \quad X_{1}^{(0)}=M_{1}
$$

$\operatorname{trace}\left(\Lambda \exp \left(-X_{1}^{\star}\right)\right)$	α	k	$\frac{\left\\|X^{(k+1)}-\left(M+f\left(X^{(k+1)}\right) N\right)\right\\|}{\\|M\\|}$
0.079	12.589	3	$8.3190 \mathrm{e}-08$
0.176	10.000	6	$3.4123 \mathrm{e}-08$
0.335	7.9433	11	$3.7944 \mathrm{e}-08$
0.570	6.3096	23	$6.9902 \mathrm{e}-08$
0.889	5.0119	117	$9.6324 \mathrm{e}-08$
1.296	3.9811	500	$3.5943 \mathrm{e}-01$
1.789	3.1623	500	$1.2832 \mathrm{e}+00$

Considerations on the large scale problem

- Linear problem. $f(X)=\operatorname{trace}(X)$,

$$
\widetilde{X} \equiv \widetilde{M}+\sigma \widetilde{N}, \quad \sigma=\frac{f(\widetilde{M})}{1-f(\widetilde{N})},
$$

where $\widetilde{M}, \widetilde{N}$ approximate M and N resp.
(easy case)

- Linear-nonlinear problem. For fixed point iteration,

which requires approximating $f\left(\widetilde{X}^{(k)}\right)$, e.g., $f(\widetilde{X})=\operatorname{trace}(\psi(\widetilde{X}))$ - a problem in its
own.

Considerations on the large scale problem

- Linear problem. $f(X)=\operatorname{trace}(X)$,

$$
\widetilde{X} \equiv \widetilde{M}+\sigma \widetilde{N}, \quad \sigma=\frac{f(\widetilde{M})}{1-f(\widetilde{N})},
$$

where $\widetilde{M}, \widetilde{N}$ approximate M and N resp.
(easy case)

- Linear-nonlinear problem. For fixed point iteration,

$$
\widetilde{X}^{(k+1)} \equiv \widetilde{M}+f\left(\widetilde{X}^{(k)}\right) \widetilde{N} .
$$

which requires approximating $f\left(\widetilde{X}^{(k)}\right)$, e.g., $f(\widetilde{X})=\operatorname{trace}(\psi(\widetilde{X}))$ - a problem in its own.

Conclusions

- Quasi-linear matrix equations are a new source of open problems
- The large scale setting is a challenge
- Generalizations to tensor case is possible

REFERENCES
Margherita Porcelli, and V. Simoncini
Numerical solution of a class of quasi-linear matrix equations
Linear Algebra and Its Applications 664C, 2023
Yue Hao and V. Simoncini Numer. Linear Algebra w/Appl. 28(5), 2021
``` WWW.dm.unibo.it/~\mathrm{ simoncin
 valeria.simoncini@unibo.it

```
}

The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications

\section*{... See you there}

\section*{METT X}

\section*{10th Workshop on Matrix Equations and Tensor Techniques}

\section*{September 13-15, 2023 \\ RWTH Aachen University (main building)}
https://www.igpm.rwth-aachen.de/workshop/mett2023


Special| Issue of ETNA (Electronic Transactions on Numerical Analysis), open for participants only!
Fully (diamond) Open Access without OA charges!```

