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The problem

Given
M € R™*™ symmetric (M = M ")
N € R™™" skew-symmetric (N = —N ")

approximate selected (finite) eigenpairs

Problem’s features:
e Large dimension
e N may be singular

e The pencil M — AN is regular



Problem in context

Nomenclature and related problems:

alternating eigenproblem

generalized (or extended) Hamiltonian eigenproblem

skew-Hamiltonian / Hamiltonian eigenproblem

even / odd eigenproblem

Application problems:
Quadratic optimal or robust control problems
Passivity analysis

Model reduction



General characterization

Mx = ANzx

* Small scale problem well studied:

analysis, perturbation theory, software

(cf. Byers, Mehrmann, Xu, Benner, Kressner, Schroder, Watkins, etc.)

* Large scale problem less exercised, in particular for N singular

Peculiarity of the problem: spectrum has special symmetry wrto origin
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eFor N=—-N'" M=MT", the pencil
alN — M

is even: (o, B) same as (—a;, 3) + transposition

o (\,—X\, )\, —)) is called Hamiltonian eigensymmetry

. . . . - 0 I
(H is Hamiltonian if (HJ)' = HJ, with J = [ ] )
—I 0

e If the pb dimension is 2k (even) then aN — BM is equivalent to the

skew-Hamiltonian / Hamiltonian pencil

aN — M, N=NJ', M=MJ'
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What may go wrong with an out-of-the-shelf solver

Approximate eigenpairs around selected value o

“shift-and-invert” Krylov subspace method: solve

1
\AN— O

(M—JN)_lN:U:n:U, n =

An example: True eigenvalues closest to 0 = 107 : £10.544
eigs(M,N,10 i, tol), tol=10"12 (m = 20)
After 5 cycles:

10.544 +42.2318 - 1071 residual : 1.0013 - 10~ %2
—10.544 +42.5349 - 10~**  residual : 5.7810 - 10~

both imaginary parts are small, but above residual norm !

= Are these matching eigs?




What may go wrong with an out-of-the-shelf solver. |l

Missing some of the requested (unmatching) eigenvalues:

T
X true eigs [
[1 ARPACK




Possible difficulties with spectral preserving solver

0 I
Assume for the moment that N = J = . Then the matrix

—I 0

K:=M-+acJ) " JM—0cJ)'J
is skew-Hamiltonian (JK = —(JK)")

(cf. Mehrmann, Watkins, Benner, FaBbender, Stoll, Effenberger)




Possible difficulties with spectral preserving solver

0 I
Assume for the moment that N = J = . Then the matrix

—I 0

K:=M-+acJ) " JM—0cJ)'J
is skew-Hamiltonian  (JK = —(JK)")
(cf. Mehrmann, Watkins, Benner, FaBbender, Stoll, Effenberger)

= Generate a tall matrix V such that
T=V'IKV

Is skew-Hamiltonian and of lower dimension
(e.g. V portion of symplectic transf.)

= Compute eig(7") with structure preserving method for dense pbs




Possible difficulties with spectral preserving solver

0 I
Assume for the moment that N = J = . Then the matrix

—I 0

K:=M-+acJ) " JM—0cJ)'J
is skew-Hamiltonian  (JK = —(JK)")
(cf. Mehrmann, Watkins, Benner, FaBbender, Stoll, Effenberger)
= Generate a tall matrix V' such that
T=V'JKV

Is skew-Hamiltonian and of lower dimension
(e.g. V portion of symplectic transf.)
= Compute eig(7") with structure preserving method for dense pbs

Problem: T' is not skew-Hamiltonian to machine precision !




A convenient spectral transformation

Mx = ANz
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A convenient spectral transformation

Mx = ANz

Given the target value o (real or purely imaginary),

K:=(M+0oN)"'N(M —-ocN)'N

1

(cf. SHIRA method, Mehrmann-Watkins '01)

A close to o = 0 large

Natural search space for approximation:

Ko (K, v1) = span{vi, Kvq, ..., K™ tv;}




A convenient spectral transformation: basic properties

K=(M+ocN)"'NM—-oN)'N

) M+oN=(M-—-oN)"
ii) the matrices (M +oN) !N and (M — oN) !N commute

iii) the matrix K = (M +oN) " 'N(M — ocN) !N satisfies

NK‘=—-(NKY'", ‘¢eN,

that is, NK?* is skew-symmetric for any natural number ¢

In particular, K'N=NK

iv) If o €1R, then M +0oN = (M +oN)*
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K (K,v1) = spanf{vy, Kvy, ..., K™ 1y}

Pros

e Matching eigs captured: +A==£4/5+ 02 0 € A(K)
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A convenient spectral transformation: Pros and Cons
K=(M+ocN)"'N(M—-0oN)"IN
K (K,v1) = spanf{vy, Kvy, ..., K™ 1y}

Pros
e Matching eigs captured: +A==£4/5+ 02 0 € A(K)
e Well established recurrence for K,,, (K, v1)

e Efficient eigenvalue approximation if fast solves with M — o N

Cons

e All eigs of K are double! Only one instance should be retained

(round-off plays against us)

e Search space with K in general not good for evecs of (M, N)
x_, x4 matched evecs of (M, N) = span{x_, x4} invariant space of K

but <




An important property to be exploited

Let (A, x4 ) be a simple eigenpair of (M, N) () #0)
Let (—\,z_) be the matched eigenpair of (M, N)
Then

b) Let V be an N-neutral subspace of C”
(i.e., v Nw =0 for any v,w € V)

If u € span{z,x_} NV, then no other linearly independent
vector of span{x,z_} also belongs to V




Fixing the cons

Pb.: All eigs of K are double! Only one instance should be retained

Fix: Require that the search space be N-neutral

Arnoldi-type recursion

KV = VinHyn + Vg1 Pmgt.me,,  V,) NV, = O,,

Thanks to NK* = —(NK*)", condition satisfied for free!

explicit enforcement of N-neutrality in finite precision arithm
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Fixing the cons

Pb.: Search space with K in general not good for evecs of (M, N)

Fix: Enrich the space
Define Wn(o) = (M —oN) "INV,
It holds

Om Hm

M Vi, Wi ()] 7 0 — N[Vman(U)][

olm I,

‘|’[Om7 (M + O'N)Um+1hm+1,m€;rn]-

= [Vin, Wi (0)] contains approximate invariant subspace of (M, N)

= symmetric/ skew-sym structure preserved!

(multiply second block by —H,)




Approximate pairs

Im

N[V, Win(0)] [

ol

—I—[Om, (M + O'N)’Um+1hm_|_1,m€;;].

Then
(ix, ii(a)) 31 (0) = [Vip, Wi (0)] 24 (0)

is an approximate eigenpair of (M, V'), where




Approximate pairs

Im

ol

N[Vin, Win (o)) [

—I-[Om, (M + O'N)’Um+1hm_|_1,m€;|;b].

Then
(ix, :?:'i(a)) 4 (0) = [Vi, Win (0)] 24 (0)

is an approximate eigenpair of (M, V'), where

—ocH,,

z(0)

x Further saving possible: recover z from evec's of H,, = V.! KV,,




Implementation consideration

Problem: If o is extremely close to 5\_|_, then £_ (o) € range(V,,)

= loose evec accuracy = large residual norm!




Implementation consideration

Problem: If o is extremely close to 5\_|_, then £_ (o) € range(V,,)

= loose evec accuracy = large residual norm!

Solution to the problem: use [V, W,,,(—0)]

(we defined W (o) = (M —oN)"1NV,,) )

N[Vin, Win(—0)] [

I, aHm:|

+[Om, (M= N)Vmt1hma1,mem].




Implementation consideration

Problem: If o is extremely close to 5\_|_, then £_ (o) € range(V,,)

= loose evec accuracy = large residual norm!

Solution to the problem: use [V, W,,,(—0)]

(we defined W (o) = (M —oN)"1NV,,) )

N[Vm> Wm(_a)] [

I, O’Hm]

+[Om, (M=N)oms1hms1,me].

In summary, we obtain approx eigenpairs:
Y

(M, [Vm,Wm(J)]z+(J)), (—)\ [Vm,Wm(—J)]z_(—J))




Implicit restart

Krylov subspace of max size m with regular Arnoldi recursion

4

Standard Krylov-Schur restarting (a la Stewart)

Note. Convergence is the same as that of IRA on matrix K




Algorithm Even-IRA

Require: v{, maximum dimension M, g, restart size Myes
1: V«—[v1], m«<—20
2: while cycle 1,2,3,... do
3: % Generation of the approximation space
while m < myqar do
m<—m—+1
v «— Kvpy,
Orthogonalize v against V' giving H1.m, m, and v against NV
hm+1,m < |[V|l, vm+1 = v/hmy1,m, V — [V, Um41]
end while
10: % Contraction of approximation space and matrix
11:  Him,1:m — QTQ" (real Schur form)
12:  Partition T' = [Tgl %g], Q = [Q1,Q2],
T11
m+1,m€;Q1

13: Ve [VimQ1,vm41], H — [h

14: % Eigenpair extraction

i|,m<_mfr’€3

15:  Compute approximate eigenpairs and Check for convergence
16: end while




Example: linear quadratic optimal control problem

i1

min/ 2" Qx4+ 2u' Sz +u' Ru dt, Q=Q'",R=R"
to

subject to the descriptor system

Ezx Az + Bu, z(0) = 2V

Y Cuz,

Under further conditions, a necessary condition for the existence of a stabilizing
feedback controller requires eigeninfo closest to the imaginary axis of

0O E 0| 0 A B
LA =AN-M=X| —ET 0 0 AT ctQCc C's
0 0 0 BT sSTC R

Application problem: rail 1357, R=0=Q, S = I, A of size 1357, R of size 7




Example rail 1357, tol=10"1% 6 matching eigs closest to o

condest(M — oN) = 5.5 - 1012 Mmaz = 20/2 = 10, 3 restarts

residual norm residual norm

eigenvalue

2.7062e-05
-2.7062e-05
8.8841e-05
-8.8841e-05
2.2710e-04
-2.2710e-04

o =1i10""°
1.1674e-17
7.7496e-18
6.0929e-17
6.9922e-17
5.9494e-16
3.2735e-15

o=10"7
3.0662e-17
6.7802e-18
6.2008e-17
4.6029e-17
1.4799e-14
6.9790e-14
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Example rail 1357, tol=10"1% 6 matching eigs closest to o

condest(M — oN) = 5.5 - 1012 Mmaz = 20/2 = 10, 3 restarts

residual norm residual norm

eigenvalue

2.7062e-05
-2.7062e-05
8.8841e-05
-8.8841e-05
2.2710e-04
-2.2710e-04

Imaginary shift:

eigs: After 100 cycles (m = 10) A = £2.2710 - 10~* with res norm O(10~8) and

O(107?)
Real shift:

o =1i10""°
1.1674e-17
7.7496e-18
6.0929e-17
6.9922e-17
5.9494e-16
3.2735e-15

o=10"7
3.0662e-17
6.7802e-18
6.2008e-17
4.6029e-17
1.4799e-14
6.9790e-14

eigs: After 1 cycle (m = 20) 2.7062e-05 (res norm 8.9218e-13), -2.7063e-05 (res
norm 2.2999e-12), 8.8842e-05 (res norm 1.6850e-11)




Passivity test

Under certain conditions, a necessary condition for a control system to

be “passive’ is that

0 A B 0
AT 0 0 CT
B" 0 -1 D'

0 C D -—I

has no purely imaginary eigs

= we will be content with very inaccurate eigenvalues!




coaxl (from Schroder-Stykel,’07)

o = 61, one cheap cycle
Even-IRA: m = 12: +6.03774, +6.0681¢ with res norm below 107°
Even-IRA: m = 20: +6.0377¢, +6.0681¢ with res norm below 108




coaxl (from Schroder-Stykel,’07)

o = 61, one cheap cycle

Even-IRA: m = 12: +6.03774, +£6.06817 with res norm below 107°

Even-IRA: m = 20: +6.0377i, +6.06817 with res norm below 1073

IRA (our implementation of eigs with true residual norms):

m (tol)

eigenvalue

residual norm

n. cycles

12 (107?)

9.5567e-09 + 6.0377 i
-1.5054e-06 + 6.0681 |

2.3634e-08
3.9961e-07

2

20 (1078)

3.2863e-13 + 6.0377 i
-4.8055e-12 + 6.0681 |

3.8536e-16
3.9425e-13

2
2
2
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Appendix: a seemingly related method

The new method seeks evec approximations in

range (| Vi, Wi (0)]), W(o) = (M —oN)"'NV,,

What about building directly the space range([V,,, W,.(o)]) ?

Alternate multiplications by (M — oN)"'N or by (M +oN)"!N:
{vi,(M —oN)"*Nvi,(M +oN)"IN(M —oN) 1 Nuvy,...,
(M —oN)"'N((M+oN)""N(M —oN)"*N)" toy,...}

= rational Krylov subspace, with shifts =0 as multiple poles

Note: Performance essentially similar to eigs on our problem
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e Possible problem: ghost eigenvalues detected in certain artificial
problem




Concluding remarks
e “Matching preserving” method
e Usually efficient and accurate approximation

e Possible problem: ghost eigenvalues detected in certain artificial

problem

Paper:

An Implicitly-restarted Krylov Method for Real
Symmetric/Skew-Symmetric Eigenproblems

Volker Mehrmann , Christian Schroder and V. Simoncini

Linear Algebra and Appl. doi:10.1016/j.1aa.2009.11.009

(Special issue in Honor of Heinrich Voss)




