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Some matrix equations - large scale

e Sylvester matrix equation AX+XB+D =0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

e Lyapunov matrix equation
AX +XA" +D =0, D=D"

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

e Multiterm matrix equation
A1 XB; + A2XBsy + ...+ Ay XBy=C
Control, (Stochastic) PDEs, ...

Survey article: V.Simoncini, SIAM Review 2016.



More matrix equations - large scale

e Systems of linear matrix equations:

A X +XA,+B'P = I
AY +YA;+ PB = F,
BX +YB' = Fy

(Simoncini, 2019 to appear in IMA Num.Anal.)



More matrix equations - large scale

e Systems of linear matrix equations:

A X +XA,+B'P = I
AlY —+ YAQ + PB = F2
BX +YB' = Fy

(Simoncini, 2019 to appear in IMA Num.Anal.)

e Riccati equation: Find X € R™"*"™ such that
AX+XA" —XBB'X+4+CTC =0

workhorse in Control Theory



More matrix equations - large scale

Systems of linear matrix equations:

A X +XA,+B'P = I
AlY —+ YAQ + PB = F2
BX +YB' = Fy

(Simoncini, 2019 to appear in IMA Num.Anal.)
Riccati equation: Find X € R™*™ such that
AX +XAT —-XBB'X+CTC=0
workhorse in Control Theory
Tensor equation: Find X € R™"*"X™ gych that

(HIMIA4+MOIAQH+AQHRQM)x+c=0 x = vec(X)

Discretization of parameter-dependent PDEs



Projection-type methods

Approximate X in:
AX +XA" +BB' =0

Given an low dimensional approximation space K,
X~ Xm col(Xm) € K
Galerkin condition: R:= AX,, + X,,A" +BB" 1 K

V. RV, =0 K = Range(Vi,)




Projection-type methods

Approximate X in:
AX +XA" +BB' =0

Given an low dimensional approximation space K,
X~ Xm col(Xm) € K
Galerkin condition: R:= AX,, + X,,A" +BB" 1 K

V. RV, =0 K = Range(Vi,)

Assume VnIVm = I, and let X,, := VmYmVﬂI.

Projected Lyapunov equation:

(Vo AVin)Yom + Y (V) ATV)  + VI BB Vi =0

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for
K = Km(A, B) = Range(|B, AB,...,A™~1B])



More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=FEK:=Kmn(A B)+Kn(A 1 A71IB),

that is, K = Range([B, A"'B, AB, A=2B, A2B, A—3B, ....])
(Druskin & Knizhnerman '98, Simoncini '07)
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e Rational Krylov subspace
K =K := Range([B, (A —s2I)"'B,...,(A—snI)"1B))

usually, {s2,...,sm} C CT chosen either a-priori or dynamically

(Used in different contexts, since Ruhe '84)



More recent options as approximation space

Enrich space to decrease space dimension

e Extended Krylov subspace
K=FEK:=Kmn(A B)+Kn(A 1 A71IB),

that is, K = Range([B, A"'B, AB, A=2B, A2B, A—3B, ....])
(Druskin & Knizhnerman '98, Simoncini '07)

e Rational Krylov subspace
K =K := Range([B, (A —s2I)"'B,...,(A—snI)"1B))

usually, {s2,...,sm} C CT chosen either a-priori or dynamically

(Used in different contexts, since Ruhe '84)

In both cases, for Range(V,,,) = K, projected Lyapunov equation:
(V,y AV ) Yo + Yo (V) ATV )+ V) BB,y =0
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Multiterm linear matrix equation

A1 XB; +A>XBy +...+ Ay XBy,=C

Applications:
e Control
e (Stochastic) PDEs
e Matrix least squares
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Multiterm linear matrix equation

A1 XB; +A>XBy +...+ Ay XBy,=C

Applications:
e Control
e (Stochastic) PDEs
e Matrix least squares
o ..

Main device: Kronecker formulation
(B1T®A1—|—...—|—BJ®Ag)x:c

lterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Szyld, Tobler, Zander, and many others...)
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Multiterm linear matrix equation

A1 XBy + A XBs + ...+ Ay XBy =C

Applications:
e Control
e (Stochastic) PDEs
e Matrix least squares

Alternative approaches:
e Projection onto rich approximation space
e Compression to two-term matrix equation
e Splitting strategy towards two-term matrix equation
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PDEs on uniform grids and separable coeffs

—eAu+¢1(2)h1 (Y)ue + d2(2) b2 (y)uy +71(2)2(Y)u = f (z,y) €

@i, Wi, Vi, © = 1,2 sufficiently regular functions + b.c.

Problem discretization by means of a tensor basis:

Finite differences, isogeometric analysis, spectral methods, etc.

14



PDEs on uniform grids and separable coeffs

—eAu+¢1(2)h1 (Y)ue + d2(2) b2 (y)uy +71(2)2(Y)u = f (z,y) €

@i, Wi, Vi, © = 1,2 sufficiently regular functions + b.c.

Problem discretization by means of a tensor basis:

Finite differences, isogeometric analysis, spectral methods, etc.

Multiterm linear equation:

—eT1U — eUT, + & B1 UV, + &UB,y Wy + 11Uy = F

Finite Diff.: U; ; = U(x;,y;) approximate solution at the nodes

(see, e.g., Palitta & Simoncini, '16)
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find v : D x 2 — R s.t. P-a.s.,
—V - (a(x,w)Vu(x,w)) = f(x) in D
u(x,w)= 0 on 0D
f: deterministic;

a: random field, linear function of finite no. of real-valued random
variables &, : @ - T, C R

Common choice: truncated Karhunen—Loéve (KL) expansion,

ax,w) = p(x) + 0 >V Ardr(x)ér (W),
r=1

u(x): expected value of diffusion coef. o: std dev.
(Ar, ér(x)) eigs of the integral operator V wrto V(x,x) = 5C(x,x')

(Ar N\ C : D x D — R covariance function )
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Discretization by stochastic Galerkin

Approx with space in tensor product form®* &}, x S,

Ax=b, A=Gi®Ki+)» G, ®K, b=gof,

r=1
x: expansion coef. of approx to w in the tensor product basis {p;¢ }
K, € R™= X"z FE matrices (sym)
Gr € R"¢%"™¢ r =0,1,...,m Galerkin matrices associated w/ Sp, (sym.)
go: first column of Gg

fo: FE rhs of deterministic PDE

!
ne = dim(Sp) = % = | ng - ng | huge

2S5y set of multivariate polyn of total degree < p

17



The matrix equation formulation

(Go®Ko+GLKi+...+4Gn Ky)x=go®f

transforms into
KoXGo+ K1 XGy + ...+ K XGp = F,  F=fog]
(Go =1)

Solution strategy. Conjecture:

e {K,} from trunc'd Karhunen—Loéve (KL) expansion

4
X ~ X low rank, X = X1 X,

(Possibly extending results of Grasedyck, 2004)
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Matrix Galerkin approximation of the deterministic part. 1

Approximation space K and basis matrix V: X~X,=V.Y

V' Ry, =0, Ry, := Ko Xy, + K1 X3,G1 + ... + Ky X Gy — fogg

Computational challenges:

e Generation of K, involved m + 1 different matrices { K.} !
e Matrices K, have different spectral properties

e n,,n¢ so large that Xy, Ry should not be formed !

(Powell & Silvester & Simoncini, SISC 2017)
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More on Kronecker connection for low-rank Galerkin approximation
A1 XB1+AXBy+...+ A/ XBy = F
e Operators: S :R™*P — R"*P
‘
S: Xw ) A;XBj
j=1
and & := Z§:1 B/ ® A;. So that

S(X)=F <& §Spvec(X) = vec(F)
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More on Kronecker connection for low-rank Galerkin approximation
A1 XB1+AXBy+...+ A/ XBy = F
e Operators: S :R™*P — R"*P
‘
S: Xw ) A;XBj
j=1
and & := Z§:1 B/ ® A;. So that

S(X)=F <& §Spvec(X) = vec(F)

e Galerkin condition: VkTRka =0 & Wr® Vk)Trk =0
where 7, = vec(Ry) and V,,, = range(W; ® Vi)
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Optimality properties of low-rank Galerkin approximation

0 0
For S: X > A;XBjand S =) Bj ®A;:

j=1 j=1
DEF: § is symmetric and positive definite if for any 0 # x € R"P,
x = vec(X), with X € R"*? it holds

e S, =S,/
e ' Syx >0, where ' Syxz = trace (Zi:l XTAjXBj>

= We use ||XH?§ =z Syx. (see, e.g., Vandereycken & Vandewalle, '10)
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Optimality properties of low-rank Galerkin approximation

0 0
For S: X > A;XBjand S =) Bj ®A;:

j=1 j=1
DEF: § is symmetric and positive definite if for any 0 # x € R"P,
x = vec(X), with X € R"*? it holds

e S, =S,/
e ' Syx >0, where ' Syxz = trace (Zi:l XTAjXBj>

= We use ||XH?§ =z Syx. (see, e.g., Vandereycken & Vandewalle, '10)

PROP: Let S(X) = F with § : X — } . A;XB; sym.pos.def., and let
X, = VkYkW,;r be the Galerkin approximate solution. Then

IX — Xills =  min _[IX ~ Z|s

Z—VkYWk
YGRI{:X k

(Palitta & Simoncini, tr2019; see also Kressner & Tobler, '10 for related results)
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Optimality properties of Galerkin approximation. Lyapunov equation.

AT X+ XA+ F =0

For A sym.pos.def.,

1 X% = 2trace(X " AX).

Let £, = X — Xj. Then

|Eyl|2 = min . |1X — Z||% = 2trace(ELAE).

Z=V, YW,

24



Optimality properties of Galerkin approximation. Lyapunov equation.

AT X+ XA+ F =0

For A sym.pos.def.,

1 X% = 2trace(X " AX).

Let £, = X — Xj. Then

|Eyl|2 = min . |1X — Z||% = 2trace(ELAE).

=V YW
Y eRk XK

&: If F'is sym, we can choose Wy =V},
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Optimality properties of low-rank Petrov-Galerkin approximation

ICr, = range(W, ® Vi) approximation space, L, test space.

In vector form: LT, =0
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Optimality properties of low-rank Petrov-Galerkin approximation

ICr, = range(W, ® Vi) approximation space, L, test space.

In vector form: LT, =0

For L, = Sy, minimization of residual norm:

min vec(F') — Syxllo = min ||vec(F') — Sy(Wir ® V,
i Ivec(F) — Sl = min, [vec(F) — Si(Wic Vil
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Optimality properties of low-rank Petrov-Galerkin approximation

ICr = range(W, ® Vi) approximation space, L, test space.

In vector form: LT, =0

For L, = Sy, minimization of residual norm:

min vec(F') — Spxzllo = min ||vec(F') — Sy(Wir QK V;
i vec() = Sl = min, vec(F) — S(Wi ® iyl

In matrix form:

min F—-S(X — ' F—-S(V.YW,
i P =Sl = min P - SO

For the Lyapunov eqn, Lin & Simoncini, 2013
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Optimality properties of low-rank Petrov-Galerkin approximation

ICr = range(W, ® Vi) approximation space, L, test space.

In vector form: LT, =0

For L, = Sy, minimization of residual norm:

min vec(F') — Spxzllo = min ||vec(F') — Sy(Wir QK V;
i vec() = Sl = min, vec(F) — S(Wi ® iyl

In matrix form:

min F—-S(X — ' F—-S(V.YW,
i P =Sl = min P - SO

For the Lyapunov eqn, Lin & Simoncini, 2013

A problem: Even if exact solution is definite, Y is not necessarily definite!
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A constrained optimality of low-rank Petrov-Galerkin approximation

Impose definiteness as constraint:

min [|[F —S(V,YW,)|r
Yy eRk Xk
Y <0
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A constrained optimality of low-rank Petrov-Galerkin approximation

Impose definiteness as constraint:

min [|[F —S(V,YW,)|r

YeRk:Xk:

Optimization context: linear matrix inequalities

Y <0,

vec(F — cS’(V,chVVkT))T

I

vec(F — S(V,YW,"))
Y

for the unknown matrix Y and scalar v > 0
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A constrained optimality of low-rank Petrov-Galerkin approximation

Impose definiteness as constraint:

min ||F —S(Vi,YW,))|r
Yy eRk Xk
Y <0

Optimization context: linear matrix inequalities

I vec(F — S(V,YW,"))
Y <0, >0
vec(F — S(Vp,YW,! )T ¥

for the unknown matrix Y and scalar v > 0
&: In practice, optimization problem solved in the reduced space!

Palitta & Simoncini, tr2019
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Low-rank Tensor equation

Find the unique X € R™"*™*"™ such that

(HIMIA+MROSAQH+ARQHQ M)vee(X)+ f3R® fa® f1 =0
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Low-rank Tensor equation

Find the unique X € R™"*™*"™ such that

(HIMIA+MROSAQH+ARQHQ M)vee(X)+ f3R® fa® f1 =0

PROP. Let ATH™ " = QAQ ™! be the eigendecomposition of A" H~ .
Then for each k = 1,. .., n, the solution X is obtained as X(:,:, k) = Z,Q ™"

where Z;. solves

(A+MNeH)ZM " + MZA" + fogrfs =0

withg' = ff H'Q.
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Low-rank Tensor equation

Find the unique X € R™"*™*"™ such that

(HIMIA+MROSAQH+ARQHQ M)vee(X)+ f3R® fa® f1 =0

PROP. Let ATH™ " = QAQ ™! be the eigendecomposition of A" H~ .
Then for each k = 1,. .., n, the solution X is obtained as X(:,:, k) = Z,Q ™"

where Z;. solves

(A+MNeH)ZM " + MZA" + fogrfs =0

withg' = ff H'Q.

An example: (Random data)

n 9 25 49 81 121
CPU Time (secs) | 0.0054 | 0.0442 | 0.3069 | 1.679 | 6.7465

(Work in progress)
& Forn=121 = n’=1,771,561
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Conclusions and Outlook

Large-scale (Multiterm) linear equations are a new computational tool

e Reduced Order methods are a key ingredient and may show
optimality properties

e Matrix equation challenges rely on strength and maturity of linear
system solvers

e Low-rank tensor equations require new thinking
Webpage: www.dm.unibo.it/ simoncin
Reference for linear matrix equations:

* V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.
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