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The problem
Find X € R™*"™ such that
AX +XA" —-XBB'X+C'C=0
with A € R™"™ B € R™P C € R**" p,s=O(1)

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...



The problem

Find X € R™*™ such that
AX +XAT - XBB'X+C"C =0
with A € R™™ B € R"*? C € R**", p,s = O(1)

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

We focus on the large scale case: n > 1000

Different strategies
e (Inexact) Kleinman iteration (Newton-type method)
e Projection methods
e Invariant subspace iteration

e (Sparse) multilevel methods



Newton-Kleinman iteration

Assume A stable. Compute sequence {X} with X =500 X

(A—XyBB'")Xj41 + Xpt1(A' =BB' X))+ C'C+XyBB'X;, =0
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Newton-Kleinman iteration
Assume A stable. Compute sequence {X} with X =500 X

(A—XyBB'")Xj41 + Xpt1(A' =BB' X))+ C'C+XyBB'X;, =0

1: Given Xo € R™ "™ such that Xg = X4, A' — BB' X, is stable.

2: For £ =0,1,..., until convergence

3: Set Al = A" — BB'X,

4: Set C,I = [Xi B, CT]

5 Solve A, X1 4+ Xpi1 Al +C CL =0

Critical issues:

e The full matrix X cannot be stored (sparse or low-rank approx)
e Need a computable stopping criterion

e Each iteration k requires the solution of the Lyapunov equation

(Benner, Feitzinger, Hylla, Saak, Sachs, ...)



Galerkin projection method for the Riccati equation

Given the orth basis V. for an approximation space, determine
Xp = ViYi Vi

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space
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Galerkin projection method for the Riccati equation

Given the orth basis V. for an approximation space, determine
Xp = ViYi Vi

to the Riccati solution matrix by orthogonal projection:

Galerkin condition: Residual orthogonal to approximation space

Vil (AX + X4 AT —X,BB X, +C C)Vi, =0
giving the reduced Riccati equation

Vi AVi)Y + Y(V,' A" Vi)=Y (Vi BB' Vi)Y + (Vi CT)(CVi) =0

Y. is the stabilizing solution (Heyouni-Jbilou 2009)
Key questions:
e Which approximation space?

e |s this meaningful from a Control Theory perspective?
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Dynamical systems and the Riccati equation

AX +XA" - XBB'™X+CTC =0

Time-invariant linear system

t(t) = Ax(t) + Bu(t), z(0) = xg

y(t) = Cx(2),
u(t) : control (input) vector; y(t) : output vector
x(t) : state vector; T : initial state
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Dynamical systems and the Riccati equation

AX +XA" - XBB'™X+CTC =0

Time-invariant linear system

t(t) = Ax(t) + Bu(t), z(0) = xg

y(t) = Cx(2),
u(t) : control (input) vector; y(t) : output vector
x(t) : state vector; T : initial state
Minimization problem for a Cost functional: (simplified form)

i%fj(u, To) J(u, zqg) := /OOO (z(t) "' C " Cx(t) + u(t) "u(t)) dt
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Dynamical systems and the Riccati equation

AX + XAT - XBB™X+CTC =0

igfj(u,a:o) J(u, xg) := /OOO (z(t) ' C " Cx(t) + u(t) "u(t)) dt

THEOREM Let the pair (A, B) be stabilizable and (C, A) observable.
Then there is a unique solution X > 0 of the Riccati equation. More-
over,

i) For each xg there is a unique optimal control, and it is given by

u(t) = —B' Xexp((A — BB'X)t)zg for t>0

i) J(uy, o) = 29 Xag for all 2y € R™

see, e.g., Lancaster & Rodman, 1995
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Order reduction of dynamical systems by projection

Let V. € R™*4% have orthonormal columns, d; < n

let T, =V, AV, By=V,)B, C] =V/CT

Reduced order dynamical system:

Z(t) = Tiu@(t) + Bp(t),  Z(0) = Ty :=V, o

xk(t) — kalj\(t) ~ :E(t)

Typical frameworks:
e Transfer function approximation

e Model reduction
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The role of the projected Riccati equation

Consider again the reduced Riccati equation:
(Vil AV)Y + Y(VTATV) =Y (VT BBTV)Y + (V] CT)(CVy) = 0
that is

T.Y + YT, —YB,B]Y +CJC) =0 (%)
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The role of the projected Riccati equation

Consider again the reduced Riccati equation:
(Vil AV)Y + Y(VTATV) =Y (VT BBTV)Y + (V] CT)(CVy) = 0
that is

T.Y +YT,) —YB.B, Y +C, C, =0 (%)

THEOREM. Let the pair (T}, Bi) be stabilizable and (Cy, T)) observ-
able. Then there is a unique solution Y > 0 of (*) that for each g

gives the feedback optimal control

ﬂ* (t) — _BZYk: exp((Tk — BkBZYk)t)Z/C\(), t Z 0

for the reduced system.
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The role of the projected Riccati equation

Consider again the reduced Riccati equation:
(Vil AV)Y + Y(VTATV) =Y (VT BBTV)Y + (V] CT)(CVy) = 0
that is

T.Y +YT] —YB,BY +C]C,, =0 (%)

THEOREM. Let the pair (T}, Bi) be stabilizable and (Cy, T)) observ-
able. Then there is a unique solution Y > 0 of (*) that for each g
gives the feedback optimal control

ﬂ* (t) — _BZYk: exp((Tk — BkBZYk)t)Z/C\(), t Z 0

for the reduced system.

& If there exists a matrix K such that A — BK is passive, then the
pair (T}, By) is stabilizable.

17



Projected optimal control vs approximate control

* Our projected optimal control function:

U (t) = =B, Y exp((Ty, — BpB, Yi)t)Zo, t>0
with X = VkYkaT

* Commonly used approximate control function:

If X is some approximation to X, then
u(t) := —BTXZ(t)
where Z(t) := exp((A — BBT X)t)zg

They induce different actions on the functional 7, even for X = X
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Projected optimal control vs approximate control
Xp = Vi YV,
Residual matrix: Rj := AX, + XA —X.BB' X, +C'C

* Projected optimal control function:
ﬂ* (t) — —B];rYk exp((Tk — BkB;_Yk)t)

THEOREM. Assume that A — BB'X,, is stable and that u(t) :=
—B"X}x(t) approx control. Then

1Rell T

'CCO ZEO,

T (W, 20) — Ji(ts, To)| = E,  with &, <

where o > 0 is such that [|e(A=BB Xu)t|| < ¢~ for all ¢ > 0.

Note: |7 (@, zo) — Ji(Tix, To)| is nonzero for Ry # 0
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On the choice of approximation space
Approximate solution X, = VkYkaT, with

(Vi AV Y s + Y (Vi AT Vi)=Y (Vi BB Vi) Yk + (Vi CT)(CVi) = 0

Krylov-type subspaces: (extensively used in the linear case)
o Kr(A,C"):=Range([C",AC",...,A*"1C"]) (Polynomial)
o EKL(A,CT) :=Ki(A,C") +Kp(A™t, A~1CT) (EKSM, Rational)
o RKr(A,C',s):=

k—1
Range([C'', (A —s20)7'C", ..., H(A —s;a)7C))

=1

(RKSM, Rational)
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Approximate solution X, = VkYkaT, with

(Vi AV Y s + Y (Vi AT Vi)=Y (Vi BB Vi) Yk + (Vi CT)(CVi) = 0

Krylov-type subspaces: (extensively used in the linear case)
o Kr(A,C"):=Range([C",AC",...,A*"1C"]) (Polynomial)
o EKL(A,CT) :=Ki(A,C") +Kp(A™t, A~1CT) (EKSM, Rational)
o RKr(A,C',s):=
k—1

Range([C'', (A —s20)7'C", ..., H(A —s;a)7C))

=1

(RKSM, Rational)

* Matrix BB not involved (nonlinear term!)
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On the choice of approximation space
Approximate solution X, = VkYkaT, with

(Vi AV Y s + Y (Vi AT Vi)=Y (Vi BB Vi) Yk + (Vi CT)(CVi) = 0

Krylov-type subspaces: (extensively used in the linear case)
o Kr(A,C"):=Range([C",AC",...,A*"1C"]) (Polynomial)
o EKL(A,CT) :=Ki(A,C") +Kp(A™t, A~1CT) (EKSM, Rational)
o RKr(A,C',s):=
k—1

Range([C'', (A —s20)7'C", ..., H(A —s;a)7C))

=1

(RKSM, Rational)
* Matrix BB not involved (nonlinear term!)

x Parameters s; (adaptively) chosen in field of values of —A
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Performance of solvers

Problem: A: 3D Laplace operator, B, C randn matrices, tol=10"8

(n,p,s) = (125000, 5, 5)

its  inner its  time space dim  rank(Xy)
Newton Xg =0 | 15 5,...,5 808 100 95
GP-EKSM 20 531 200 105
GP-RKSM 25 524 125 105

(n,p,s) = (125000, 20, 20)

its innerits  time space dim  rank(Xjy)
Newton Xo =0 | 19 5,...,5 2332 400 346
GP-EKSM 15 622 600 364
GP-RKSM 20 720 400 358

GP=Galerkin projection

(V.Simoncini & D.Szyld & M.Monsalve, 2014)
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A numerical example on the role of BB'

Consider the 500 x 500 Toeplitz matrix

A = toeplitz(—1,2.5,1,1,1), C=[1,-2,1,—-2,...],B=1

—&—RKSM

absolute residual norm

0 5 10 15 20 25 30 35 40
space dimension

Parameter computation:
Left: adaptive RKSM on A
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A numerical example on the role of BB'

Consider the 500 x 500 Toeplitz matrix

A = toeplitz(—1,2.5,1,1,1), C=[1,-2,1,—-2,...],B=1

—&—RKSM —&—RKSM

absolute residual norm

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
space dimension space dimension

Parameter computation:
Left: adaptive RKSM on A Right: adaptive RKSM on A — BB X,

(Lin & Simoncini 2015)
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On the residual matrix and adaptive RKSM

R, = AX, + X, A—X.,BB'X, +C'C

THEOREM. Let T, =1} — BkB;_Yk Then
Ry = f{kaT —+ Vkég, with f/%k — AVkYk -+ VkY/{ET -+ CT(CVk>

so that || Rl r = V2||Ri|| »

At least formally:

= VxYV,' is a solution to the Riccati equation (Ry = 0) if and only
if Z;, = V.Y is the solution to the Sylvester equation (}3% = 0)
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On the residual matrix and adaptive RKSM

Ry = fikaT + Vkl/{i;_

Expression for the semi-residual ﬁk:

THEOREM. Assume C' € R", Range(Vi)= RKr(A,C",s). Assume
that 7. = 1 — BkB,;rYk is diagonalizable. Then

Ry, = i1, (A)CT CVi (W, (— T3 )

where
det(z[ — Tk>

[T (= —s;)

wk,Tk <Z> —

(see also Beckermann 2011 for the linear case)
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On the choice of the next parameters si1

Ry, = Y1, (A)C T CVi(Wrer, (T3 )

with wk,Tk (Z) — l(j[e’:_(jgz_—j;kg))

x Greedy strategy: Next shift should make (¢ 7, (=7, ))~! smaller

4

Determine for which s in the spectral region of 7, the quantity
(Y1, (—s))~ ! is large, and add a root there

1
wk,Tk (S)

Sk region enclosing the eigenvalues of =7, = — (T} — BkBkTYk)

Spi1 = arg max
+ gseaSk

(This argument is new also for linear equations)
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Selection of sg11 in RKSM. An example

A: 900 x 900 2D Laplacian, B=1t1 with t; =5-1077,

C=101,-21,-21-2,.]
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Further results not presented but relevant

e Stabilization properties of the approx solution X
e Accuracy tracking as the approximation space grows

e Interpretation via invariant subspace approximation

(V.Simoncini, 2016)

30



Wrap-up and outlook
O Projection-type methods fill the gap between MOR and Riccati equation

O Clearer role of the non-linear term during the projection
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