Università di Bologna

Recent advances in low-rank matrix equation solvers

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Some matrix equations

- Sylvester matrix equation $\quad A \mathbf{X}+\mathbf{X} B+D=0$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, PDEs, Riccati eqn

- Lyapunov matrix equation

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Control, (Stochastic) PDEs,

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, PDEs, Riccati eqn

- Lyapunov matrix equation $\quad A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Multiterm matrix equation

Control, (Stochastic) PDEs,

Some matrix equations

- Sylvester matrix equation

$$
A \mathbf{X}+\mathbf{X} B+D=0
$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, PDEs, Riccati eqn

- Lyapunov matrix equation $\quad A \mathbf{X}+\mathbf{X} A^{\top}+D=0, \quad D=D^{\top}$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

- Multiterm matrix equation

$$
A_{1} \mathbf{X} B_{1}+A_{2} \mathbf{X} B_{2}+\ldots+A_{\ell} \mathbf{X} B_{\ell}=C
$$

Control, (Stochastic) PDEs, ...
Survey article: V.S., SIAM Review 2016.

More matrix equations

- Systems of linear matrix equations:

$$
\begin{aligned}
A_{2} \boldsymbol{X}+\boldsymbol{X} A_{1}+B^{\top} \boldsymbol{P} & =F_{1} \\
A_{1} \boldsymbol{Y}+\boldsymbol{Y} A_{2}+\boldsymbol{P} B & =F_{2} \\
B \boldsymbol{X}+\boldsymbol{Y} B^{\top} & =F_{3}
\end{aligned}
$$

(V.S., 2019)

- Riccati equation: Find $X \in \mathbb{R}^{n \times n}$ such that
workhorse in Control Theory
Tensor equation: Find $\mathbf{x} \in \mathbb{R}^{n \times n \times n}$ such that

Discretization of (parameter-dependent) PDEs
(Kronecker product, $\left.(M \otimes N)=\left(M_{i, i} N\right)\right)$

More matrix equations

- Systems of linear matrix equations:

$$
\begin{aligned}
A_{2} \boldsymbol{X}+\boldsymbol{X} A_{1}+B^{\top} \boldsymbol{P} & =F_{1} \\
A_{1} \boldsymbol{Y}+\boldsymbol{Y} A_{2}+\boldsymbol{P} B & =F_{2} \\
B \boldsymbol{X}+\boldsymbol{Y} B^{\top} & =F_{3}
\end{aligned}
$$

(V.S., 2019)

- Riccati equation: Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

workhorse in Control Theory

- Tensor equation: Find $\mathrm{X} \in \mathbb{R}^{n \times n \times n}$ such that

$$
(H \otimes M \otimes A+M \otimes A \otimes H+A \otimes H \otimes M) x+c=0 \quad x=\operatorname{vec}(\mathbf{X})
$$

Discretization of (parameter-dependent) PDEs
(Kronecker product, $\left.(M \otimes N)=\left(M_{i, j} N\right)\right)$

More matrix equations

- Systems of linear matrix equations:

$$
\begin{aligned}
A_{2} \boldsymbol{X}+\boldsymbol{X} A_{1}+B^{\top} \boldsymbol{P} & =F_{1} \\
A_{1} \boldsymbol{Y}+\boldsymbol{Y} A_{2}+\boldsymbol{P} B & =F_{2} \\
B \boldsymbol{X}+\boldsymbol{Y} B^{\top} & =F_{3}
\end{aligned}
$$

(V.S., 2019)

- Riccati equation: Find $\mathbf{X} \in \mathbb{R}^{n \times n}$ such that

$$
A \mathbf{X}+\mathbf{X} A^{\top}-\mathbf{X} B B^{\top} \mathbf{X}+C^{\top} C=0
$$

workhorse in Control Theory

- Tensor equation: Find $\mathbf{X} \in \mathbb{R}^{n \times n \times n}$ such that

$$
(H \otimes M \otimes A+M \otimes A \otimes H+A \otimes H \otimes M) \mathbf{x}+c=0 \quad \mathbf{x}=\operatorname{vec}(\mathbf{X})
$$

Discretization of (parameter-dependent) PDEs (Kronecker product, $\left.(M \otimes N)=\left(M_{i, j} N\right)\right)$

... Before proceeding:

| which linear equation which matrix structure \quad which size |
| :--- | :--- | :--- |

- key property: tensor product space approximation to the continuous problem

```
Finite differences, e.g., Bickley & McNamee, 1960, Wachspress, }196
Certain spectral methods, e.g., Canuto, Hussaini, Quarteroni and Zang, 1980s
Isogeometric Änalysis (IGA)
Space-parameter, Space-time and Parallel-in-Time (PinT) discretizations
```


... Before proceeding:

which linear equation

which matrix structure

which size

- key property: tensor product space approximation to the continuous problem
- Finite differences, e.g., Bickley \& McNamee, 1960, Wachspress, 1963
- Certain spectral methods, e.g., Canuto, Hussaini, Quarteroni and Zang, 1980s
- Isogeometric Analysis (IGA)
- Space-parameter, Space-time and Parallel-in-Time (PinT) discretizations
- ...
\rightarrow Symmetry, sparsity, etc., and also low-rank properties of data and solution
- Matrix equation size

... Before proceeding:

which linear equation

 which matrix structure which size- key property: tensor product space approximation to the continuous problem
- Finite differences, e.g., Bickley \& McNamee, 1960, Wachspress, 1963
- Certain spectral methods, e.g., Canuto, Hussaini, Quarteroni and Zang, 1980s
- Isogeometric Analysis (IGA)
- Space-parameter, Space-time and Parallel-in-Time (PinT) discretizations
- ...
- Symmetry, sparsity, etc., and also low-rank properties of data and solution
- Matrix equation size

... Before proceeding:

which linear equation

 which matrix structure which size- key property: tensor product space approximation to the continuous problem
- Finite differences, e.g., Bickley \& McNamee, 1960, Wachspress, 1963
- Certain spectral methods, e.g., Canuto, Hussaini, Quarteroni and Zang, 1980s
- Isogeometric Analysis (IGA)
- Space-parameter, Space-time and Parallel-in-Time (PinT) discretizations
- ...
- Symmetry, sparsity, etc., and also low-rank properties of data and solution
- Matrix equation size
Tiny Small Large

What do we expect from this ?

Pros:

\checkmark Smaller dimensional matrices
\checkmark Preserve continuous problem's properties
\checkmark Exploit structure (e.g., symmetry)
\checkmark Reach more complex problems
x Extra effort to go beyond vectors
x Need to leave "comfort zone" of established NLA
X Different interpretation of your NLA data

We develop our description "by exemplification"

What do we expect from this ?

Pros:

\checkmark Smaller dimensional matrices
\checkmark Preserve continuous problem's properties
\checkmark Exploit structure (e.g., symmetry)
\checkmark Reach more complex problems

Cons:
x Extra effort to go beyond vectors
X Need to leave "comfort zone" of established NLA
X Different interpretation of your NLA data

We develop our description "by exemplification"

What do we expect from this?

Pros:
\checkmark Smaller dimensional matrices
\checkmark Preserve continuous problem's properties
\checkmark Exploit structure (e.g., symmetry)
\checkmark Reach more complex problems

Cons:
x Extra effort to go beyond vectors
x Need to leave "comfort zone" of established NLA
X Different interpretation of your NLA data

> We develop our description "by exemplification"

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
T_{1} \mathbf{U}+\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=-\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
$$

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
T_{1} \mathbf{U}+\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=-\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
$$

Lexicographic ordering: $\quad \mathbf{U} \rightarrow \mathbf{u}=\left[\mathbf{U}_{11}, \mathbf{U}_{n, 1}, \mathbf{U}_{1,2}, \ldots, \mathbf{U}_{n, 2}, \ldots\right]^{\top}$

$$
A \mathbf{u}=f \quad A=I \otimes T_{1}+T_{1} \otimes I, f=\operatorname{vec}(F)
$$

More generally, w/separable coefficients (and convection-diffusion)

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
T_{1} \mathbf{U}+\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=-\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
$$

Lexicographic ordering: $\quad \mathbf{U} \rightarrow \mathbf{u}=\left[\mathbf{U}_{11}, \mathbf{U}_{n, 1}, \mathbf{U}_{1,2}, \ldots, \mathbf{U}_{n, 2}, \ldots\right]^{\top}$

$$
A \mathbf{u}=f \quad A=I \otimes T_{1}+T_{1} \otimes I, f=\operatorname{vec}(F)
$$

More generally, w/separable coefficients (and convection-diffusion)

$$
A_{1} \boldsymbol{U} M_{1}+M_{2} \boldsymbol{U} A_{2}=F
$$

$$
\phi(x, y) u_{x x}+\psi(x, y) u_{y y}=f \quad \Rightarrow \quad\left(M_{2}^{-1} A_{1}\right) \boldsymbol{U}+\boldsymbol{U}\left(A_{2} M_{1}^{-1}\right)=\widehat{F}
$$

The Poisson equation

$$
-u_{x x}-u_{y y}=f, \quad \text { in } \quad \Omega=(0,1)^{2} \quad+\text { Dirichlet zero b.c. }
$$

FD Discretization: $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$, with $\left(x_{i}, y_{j}\right)$ interior nodes, so that

$$
T_{1} \mathbf{U}+\mathbf{U} T_{1}^{\top}=F, \quad F_{i j}=f\left(x_{i}, y_{j}\right), \quad T_{1}=-\frac{1}{h^{2}} \operatorname{tridiag}(1,-2,1)
$$

Lexicographic ordering: $\quad \mathbf{U} \rightarrow \mathbf{u}=\left[\mathbf{U}_{11}, \mathbf{U}_{n, 1}, \mathbf{U}_{1,2}, \ldots, \mathbf{U}_{n, 2}, \ldots\right]^{\top}$

$$
A \mathbf{u}=f \quad A=I \otimes T_{1}+T_{1} \otimes I, f=\operatorname{vec}(F)
$$

More generally, w/separable coefficients (and convection-diffusion)

$$
A_{1} \boldsymbol{U} M_{1}+M_{2} \boldsymbol{U} A_{2}=F
$$

$$
\phi(x, y) u_{x x}+\psi(x, y) u_{y y}=f \quad \Rightarrow \quad\left(M_{2}^{-1} A_{1}\right) \boldsymbol{U}+\boldsymbol{U}\left(A_{2} M_{1}^{-1}\right)=\widehat{F}
$$

More generally, on polygonal domain (multiterm eqn)

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=F
$$

Various settings:

- Tiny A and B : Kron will do!
- Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)
- Large A and B : Iterative solution (F low rank)

P Projection methods

* ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=F
$$

Various settings:

- Tiny A and B : Kron will do!
- Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)

- Projection methods
> ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of the Sylvester equation

$$
A \boldsymbol{U}+\boldsymbol{U} B=F
$$

Various settings:

- Tiny A and B : Kron will do!
- Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)
- Large A and B : Iterative solution (F low rank)
- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

All-at-once heat equation

$$
u_{t}+\ell(u)=f \quad u(0)=0 \quad \text { (for convenience) }
$$

Variational formulation
find $u \in U: \quad b(u, v)=\langle f, v\rangle \quad$ for all $v \in V$
where

$$
\begin{aligned}
& U:=H_{(0)}^{1}\left(\mathcal{I} ; X^{\prime}\right) \cap L_{2}(\mathcal{I}, X), X:=H_{0}^{1}(\Omega), V:=L_{2}(\mathcal{I} ; X) \\
& b(u, v):=\int_{0}^{\tau} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{\tau} a(u(t), v(t)) d t \\
& \langle f, v\rangle:=\int_{0}^{\tau} \int_{\Omega} f(t, x) v(t, x) d x d t .
\end{aligned}
$$

Discretization:
Petrov-Galerkin method with trial and test spaces $U_{\delta} \subset U, V_{\delta} \subset V$

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta}
$$

All-at-once heat equation

$$
u_{t}+\ell(u)=f \quad u(0)=0 \quad \text { (for convenience) }
$$

Variational formulation

$$
\text { find } u \in U: \quad b(u, v)=\langle f, v\rangle \quad \text { for all } v \in V
$$

where

$$
\begin{aligned}
& U:=H_{(0)}^{1}\left(\mathcal{I} ; X^{\prime}\right) \cap L_{2}(\mathcal{I}, X), X:=H_{0}^{1}(\Omega), V:=L_{2}(\mathcal{I} ; X) \\
& b(u, v):=\int_{0}^{\tau} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{\tau} a(u(t), v(t)) d t \\
& \langle f, v\rangle:=\int_{0}^{\tau} \int_{\Omega} f(t, x) v(t, x) d x d t .
\end{aligned}
$$

Discretization: Petrov-Galerkin method with trial and test spaces $U_{\delta} \subset U, V_{\delta} \subset V$

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta}
$$

with $U_{\delta}:=S_{\Delta t} \otimes X_{h}, V_{\delta}=Q_{\Delta t} \otimes X_{h}$ where
$S_{\Delta t}$: piecewise linear FE on \mathcal{I}
$Q_{\Delta t}$: piecewise constant FE on \mathcal{I}
X_{h} : any conformal space, e.g., p.w. linear FE
\& Well-posedness (discrete inf-sup cond) depends on the choice of U_{δ}, V_{δ}

The final linear system

$$
B_{\delta}^{\top} u_{\delta}=f_{\delta}
$$

where

$$
\begin{aligned}
{\left[B_{\delta}\right]_{(k, i),(\ell, j)} } & =\left(\dot{\sigma}^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})}\left(\phi_{i}, \phi_{j}\right)_{L_{2}(\Omega)}+\left(\sigma^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})} a\left(\phi_{i}, \phi_{j}\right), \\
{\left[f_{\delta}\right]_{(\ell, j)} } & =\left(f, \tau^{\ell} \otimes \phi_{j}\right)_{L_{2}(\mathcal{I} ; H)}
\end{aligned}
$$

that is, $B_{\delta}=D_{\Delta t} \otimes M_{h}+C_{\Delta t} \otimes K_{h}$
Remark: We approximate f_{δ} to achieve full tensor-product structure
Resulting generalized Sylvester equation:

$$
M_{h} \mathbf{U}_{\delta} D_{\Delta t}+K_{h} \mathbf{U}_{\delta} C_{\Delta t}=F_{\delta}, \quad \text { with } \quad F_{\delta}=\left[g_{1}, \ldots, g_{P}\right]\left[h_{1}, \ldots, h_{P}\right]^{\top}
$$

$$
F_{\delta} \text { matrix of low rank } \Rightarrow \mathbf{U}_{\delta} \text { approx by low rank matrix } \tilde{\mathbf{U}}_{\delta}
$$

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2021)

A simple example

$\Omega=(-1,1)^{3}$, with homogeneous Dirichlet boundary conditions
$\mathcal{I}=(0,10)$ and initial conditions $u(0, x, y, z) \equiv 0$
$f(t, x, y, z):=10 \sin (t) t \cos \left(\frac{\pi}{2} x\right) \cos \left(\frac{\pi}{2} y\right) \cos \left(\frac{\pi}{2} z\right) \quad\left(F_{\delta}\right.$ is thus low rank)

			RKSM			CN Time(s)	
N_{h}	N_{t}	Its	$\mu_{\text {mem }}$	$\operatorname{rank}\left(\widetilde{U}_{\delta}\right)$	Time(s)	Direct	Iterative
41300	300	13	14	9	25.96	123.43	59.10
	500	13	14	9	30.46	143.71	78.01
	700	13	14	9	28.17	153.38	93.03
347361	300	14	15	9	820.17	14705.10	792.42
	500	14	15	9	828.34	15215.47	1041.47
	700	14	15	7	826.93	15917.52	1212.57

\& Memory allocations in CN are for full problem
\& Sylvester-oriented method: overall Space and Time independence

The multiterm matrix equation problem

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix

- Kronecker form and back on track
- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

A sample of these methodologies on different problems:
\& Stochastic PDEs
\& PDFs on polygonal domains, IGA, spectral methods, etc
\& Space-time PDEs
\& All-at-once PDE-constrained optimization problem

- Bilinear control problems

The multiterm matrix equation problem

$$
A_{1} \boldsymbol{X} B_{1}+A_{2} \boldsymbol{X} B_{2}+\ldots+A_{\ell} \boldsymbol{X} B_{\ell}=C
$$

$A_{i} \in \mathbb{R}^{n \times n}, B_{i} \in \mathbb{R}^{m \times m}, \boldsymbol{X}$ unknown matrix

- Kronecker form and back on track
- Fixed point iterations (an "evergreen"...)
- Projection-type methods \Rightarrow low rank approximation
- Ad-hoc problem-dependent procedures
- etc.

A sample of these methodologies on different problems:
\& Stochastic PDEs
\& PDEs on polygonal domains, IGA, spectral methods, etc
\& Space-time PDEs
4. All-at-once PDE-constrained optimization problem
a Bilinear control problems
\&

"Ultraweak" variational formulations of the wave equation

$$
\ddot{u}(t)+A u(t)=f(t) \text { in } V^{\prime}, t \in I \text { a.e., } \quad u(0)=u_{0} \in H, \dot{u}(0)=u_{1} \in V^{\prime} .
$$

initial state in, say, $L_{2}(\Omega)$, initial velocity in, say, $H^{-1}(\Omega)$ (very low regularity) \Rightarrow weakly smooth solution
with

* Test space \mathbb{V}_{δ} : proper piecewise quadratic splines in time and conformal (e.g. piecewise quadratic) finite elements in space,
* Trial space U_{δ} : adjoint operator $B^{*}=\partial_{t t}+A$ applied to test basis functions (Julian Henning, Davide Palitta, V. S., Karsten Urban, 2022)

"Ultraweak" variational formulations of the wave equation

$$
\ddot{u}(t)+A u(t)=f(t) \text { in } V^{\prime}, t \in I \text { a.e., } \quad u(0)=u_{0} \in H, \dot{u}(0)=u_{1} \in V^{\prime}
$$

initial state in, say, $L_{2}(\Omega)$, initial velocity in, say, $H^{-1}(\Omega)$ (very low regularity) \Rightarrow weakly smooth solution

$$
b\left(u_{\delta}, v_{\delta}\right)=g\left(v_{\delta}\right) \quad \forall v_{\delta} \in \mathbb{V}_{\delta}
$$

with

$$
b\left(u_{\delta}, v_{\delta}\right):=\left(u_{\delta}, \ddot{v}_{\delta}+A v_{\delta}\right)_{\mathcal{H}}, \quad g\left(v_{\delta}\right):=\left(f_{\delta}, v_{\delta}\right)_{\mathcal{H}}+\left\langle u_{1}, v_{\delta}(0)\right\rangle-\left(u_{0}, \dot{v}(0)\right)_{H}
$$

* Test space \mathbb{V}_{δ} : proper piecewise quadratic splines in time and conformal (e.g. piecewise quadratic) finite elements in space,
* Trial space \mathbb{U}_{δ} : adjoint operator $B^{*}=\partial_{t t}+A$ applied to test basis functions (Julian Henning, Davide Palitta, V. S., Karsten Urban, 2022)

The resulting linear system

In the optimal inf-sup case, $\quad \mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$,

$$
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \quad \mathbb{B}_{\delta} \text { spd for } A=-\Delta
$$

where

$$
\left[\boldsymbol{g}_{\delta}\right]_{\nu}=\left(f, \varphi_{\nu}\right)_{\mathcal{H}}+\left\langle u_{1}, \varphi_{\nu}(0)\right\rangle_{V^{\prime} \times V}-\left(u_{0}, \dot{\varphi}_{\nu}(0)\right)_{H} \quad \text { plus quad formulas }
$$

$$
\begin{aligned}
& {\left[\boldsymbol{Q}_{\Delta t}\right]_{\ell, k}:=\left(\varrho^{\ell}, \ddot{e}^{k}\right)_{L_{2}(I)}, \quad\left[\boldsymbol{M}_{\Delta t}\right]_{\ell, k}:=\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)}, \quad\left[\boldsymbol{N}_{\Delta t}\right]_{\ell, k}:=\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)},} \\
& {\left[\boldsymbol{Q}_{h}\right]_{j, i}:=\left(A \phi_{j}, A \phi_{i}\right)_{L_{2}(\Omega)}, \quad\left[\boldsymbol{M}_{h}\right]_{j, i}:=\left(\phi_{j}, \phi_{i}\right)_{L_{2}(\Omega)}, \quad\left[\boldsymbol{N}_{h}\right]_{j, i}:=\left(A \phi_{j}, \phi_{i}\right)_{L_{2}(\Omega)} .}
\end{aligned}
$$

The resulting linear system

In the optimal inf-sup case, $\quad \mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{N}_{\Delta t}^{\top} \otimes \boldsymbol{N}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$,

$$
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \quad \mathbb{B}_{\delta} \text { spd for } A=-\Delta
$$

where

$$
\left[\boldsymbol{g}_{\delta}\right]_{\nu}=\left(f, \varphi_{\nu}\right)_{\mathcal{H}}+\left\langle u_{1}, \varphi_{\nu}(0)\right\rangle_{V^{\prime} \times V}-\left(u_{0}, \dot{\varphi}_{\nu}(0)\right)_{H} \quad \text { plus quad formulas }
$$

$$
\begin{aligned}
& {\left[\boldsymbol{Q}_{\Delta t}\right]_{\ell, k}:=\left(\varrho^{\ell}, \ddot{\varrho}^{k}\right)_{L_{2}(I)}, \quad\left[\boldsymbol{M}_{\Delta t}\right]_{\ell, k}:=\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)}, \quad\left[\boldsymbol{N}_{\Delta t}\right]_{\ell, k}:=\left(\varrho^{\ell}, \varrho^{k}\right)_{L_{2}(I)},} \\
& {\left[\boldsymbol{Q}_{h}\right]_{j, i}:=\left(A \phi_{j}, \boldsymbol{A} \phi_{i}\right)_{L_{2}(\Omega)}, \quad\left[\boldsymbol{M}_{h}\right]_{j, i}:=\left(\phi_{j}, \phi_{i}\right)_{L_{2}(\Omega)}, \quad\left[\boldsymbol{N}_{h}\right]_{j, i}:=\left(A \phi_{j}, \phi_{i}\right)_{L_{2}(\Omega)} .}
\end{aligned}
$$

The resulting linear system

For $\quad \mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\left(\boldsymbol{N}_{\Delta t}+\boldsymbol{N}_{\Delta t}^{\top}\right) \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$,

$$
\begin{equation*}
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \tag{*}
\end{equation*}
$$

- Structure-aware Preconditioned "matrix-oriented" Conjugate gradients
- Robust preconditioning $\mathbb{K}_{\delta}^{\top} \mathbb{M}_{\delta}^{-1} \mathbb{K}_{\delta}\left(\mathbb{M}_{\delta}:=\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{M}_{h}\right.$ and $\left.\mathbb{K}_{\delta}:=\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{N}_{h}\right)$
- (cheaper) Sylvester preconditioning $\mathbb{P}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$
- Galerkin method

Transform (*) into linear multiterm matrix equation:
$\boldsymbol{M}_{h} \boldsymbol{U} \boldsymbol{Q}_{\Delta t}^{\top}+\boldsymbol{N}_{h}^{\top} \boldsymbol{U}\left(\boldsymbol{N}_{\Delta t}^{\top}+\boldsymbol{N}_{\Delta t}\right)+\boldsymbol{Q}_{h} \boldsymbol{U} \mathbf{M}_{\Delta t}=G, \quad G=G_{1} G_{2}^{\top}$
Approximate U as $U_{k}=V_{k} \boldsymbol{Y}_{k} \boldsymbol{W}_{k}^{\top}$ of low rank:
i) Properly chose $\boldsymbol{V}_{k}, \boldsymbol{W}_{k}$
ii) Impose Galerkin orthogonality of residual wrto $W_{k} \otimes V_{k}$

This gives

The resulting linear system

For $\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\left(\boldsymbol{N}_{\Delta t}+\boldsymbol{N}_{\Delta t}^{\top}\right) \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$,

$$
\begin{equation*}
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \tag{*}
\end{equation*}
$$

- Structure-aware Preconditioned "matrix-oriented" Conjugate gradients
- Robust preconditioning $\mathbb{K}_{\delta}^{\top} \mathbb{M}_{\delta}^{-1} \mathbb{K}_{\delta}\left(\mathbb{M}_{\delta}:=\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{M}_{h}\right.$ and $\left.\mathbb{K}_{\delta}:=\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{N}_{h}\right)$
- (cheaper) Sylvester preconditioning $\mathbb{P}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$
- Galerkin method

Transform (*) into linear multiterm matrix equation:

$$
\boldsymbol{M}_{h} \boldsymbol{U} \boldsymbol{Q}_{\Delta t}^{\top}+\boldsymbol{N}_{h}^{\top} \boldsymbol{U}\left(\boldsymbol{N}_{\Delta t}^{\top}+\boldsymbol{N}_{\Delta t}\right)+\boldsymbol{Q}_{h} \boldsymbol{U} \boldsymbol{M}_{\Delta t}=\boldsymbol{G}, \quad \boldsymbol{G}=\boldsymbol{G}_{1} \boldsymbol{G}_{2}^{\top}
$$

Approximate \boldsymbol{U} as $\boldsymbol{U}_{k}=\boldsymbol{V}_{k} \boldsymbol{Y}_{k} \boldsymbol{W}_{k}^{\top}$ of low rank:
i) Properly chose $\boldsymbol{V}_{k}, \boldsymbol{W}_{k}$
ii) Impose Galerkin orthogonality of residual wrto $\boldsymbol{W}_{k} \otimes \boldsymbol{V}_{k}$

This gives

The resulting linear system

For $\mathbb{B}_{\delta}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\left(\boldsymbol{N}_{\Delta t}+\boldsymbol{N}_{\Delta t}^{\top}\right) \otimes \boldsymbol{N}_{h}^{\top}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$,

$$
\begin{equation*}
\mathbb{B}_{\delta} \boldsymbol{u}_{\delta}=\boldsymbol{g}_{\delta} \tag{*}
\end{equation*}
$$

- Structure-aware Preconditioned "matrix-oriented" Conjugate gradients
- Robust preconditioning $\mathbb{K}_{\delta}^{\top} \mathbb{M}_{\delta}^{-1} \mathbb{K}_{\delta}\left(\mathbb{M}_{\delta}:=\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{M}_{h}\right.$ and $\left.\mathbb{K}_{\delta}:=\boldsymbol{N}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{N}_{h}\right)$
- (cheaper) Sylvester preconditioning $\mathbb{P}=\boldsymbol{Q}_{\Delta t} \otimes \boldsymbol{M}_{h}+\boldsymbol{M}_{\Delta t} \otimes \boldsymbol{Q}_{h}$
- Galerkin method

Transform (*) into linear multiterm matrix equation:

$$
\boldsymbol{M}_{h} \boldsymbol{U} \boldsymbol{Q}_{\Delta t}^{\top}+\boldsymbol{N}_{h}^{\top} \boldsymbol{U}\left(\boldsymbol{N}_{\Delta t}^{\top}+\boldsymbol{N}_{\Delta t}\right)+\boldsymbol{Q}_{h} \boldsymbol{U} \boldsymbol{M}_{\Delta t}=\boldsymbol{G}, \quad \boldsymbol{G}=\boldsymbol{G}_{1} \boldsymbol{G}_{2}^{\top}
$$

Approximate \boldsymbol{U} as $\boldsymbol{U}_{k}=\boldsymbol{V}_{k} \boldsymbol{Y}_{k} \boldsymbol{W}_{k}^{\top}$ of low rank:
i) Properly chose $\boldsymbol{V}_{k}, \boldsymbol{W}_{k}$
ii) Impose Galerkin orthogonality of residual wrto $\boldsymbol{W}_{k} \otimes \boldsymbol{V}_{k}$

This gives

$$
\begin{aligned}
\left(\boldsymbol{V}_{k}^{\top} \boldsymbol{M}_{h} \boldsymbol{V}_{k}\right) \boldsymbol{Y}_{k}\left(\boldsymbol{W}_{k}^{\top} \boldsymbol{Q}_{\Delta t}^{\top} \boldsymbol{W}_{k}\right) & +\left(\boldsymbol{V}_{k}^{\top} \boldsymbol{N}_{h}^{\top} \boldsymbol{V}_{k}\right) \boldsymbol{Y}_{k}\left(\boldsymbol{W}_{k}^{\top}\left(\boldsymbol{N}_{\Delta t}^{\top}+\boldsymbol{N}_{\Delta t}\right) \boldsymbol{W}_{k}\right) \\
& +\left(\boldsymbol{V}_{k}^{\top} \boldsymbol{Q}_{h} \boldsymbol{V}_{k}\right) \boldsymbol{Y}_{k}\left(\boldsymbol{W}_{k}^{\top} \boldsymbol{M}_{\Delta t} \boldsymbol{W}_{k}\right)=\left(\boldsymbol{V}_{k}^{\top} \boldsymbol{G}_{1}\right)\left(\boldsymbol{G}_{2}^{\top} \boldsymbol{W}_{k}\right) .
\end{aligned}
$$

A numerical example. Discontinuous solution.

$$
\begin{aligned}
& A=-c^{2} \Delta(c \text { wave speed }), H=L_{2}(\Omega), \Omega=(0,1)^{3}, V=H_{0}^{1}(\Omega) \\
& u_{0}=\mathbf{1}_{r<\sqrt{2} / 5}
\end{aligned}
$$

PDE-Constrained optimization problems

Functional to be minimized:

$$
J(y, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega_{1}}(y-\hat{y})^{2} \mathrm{dxdt}+\frac{\beta}{2} \int_{0}^{T} \int_{\Omega_{u}} u^{2} \mathrm{dxdt}
$$

$\star y$: is the state, \hat{y} is the desired state given on a subset Ω_{1} of Ω,
$\star u$ is the control on a subset Ω_{u} of Ω,
(regularized by the control cost parameter β)
PDE constraining the functional $J(y, u)$ (Dirichlet b.c.): for instance,

$$
\begin{aligned}
\dot{y}-\Delta y=u & \text { in } \quad \Omega_{u} \\
\dot{y}-\Delta y=0 & \text { in } \quad \Omega \backslash \Omega_{u} \\
y=0 & \text { on } \quad \partial \Omega
\end{aligned}
$$

\& All-at-once strategy (space, time, multipliers)
\& Resulting matrix equation efficiently solved by using a tailored low-rank Galerkin method (Alexandra Bünger, V.S., and Martin Stoll, 2021)

Further considerations

- More structure yields improved algorithmic design. For instance,

$$
A \boldsymbol{X}+\boldsymbol{X} B+M_{1} \boldsymbol{X} M_{2}=C
$$

with M_{1}, M_{2} low rank

- Truncated versions of matrix-oriented Krylov methods have better chances
- 3D case leads to linear tensor equations: a new research area
- Matrix-oriented discretization methods for reaction-diffusion PDEs

```
- J. Henning, D. Palitta, V. S., K. Urban, A Very Weak Space-Time Variational Formulation for the Wave
Equation: Analysis and Efficient Numerical Solution, M2AN, }202
- A. Buenger, V. S., M. Stoll A low-rank matrix equation method for solving PDE-constrained
optimization problems, SISC }202
- Y. Hao, V. S., Matrix equation solving of PDEs in polygonal domains using conformal mappings, J. 
```


Further considerations

- More structure yields improved algorithmic design. For instance,

$$
A \boldsymbol{X}+\boldsymbol{X} B+M_{1} \boldsymbol{X} M_{2}=C
$$

with M_{1}, M_{2} low rank

- Truncated versions of matrix-oriented Krylov methods have better chances
- 3D case leads to linear tensor equations: a new research area
- Matrix-oriented discretization methods for reaction-diffusion PDEs

REFERENCES

- J. Henning, D. Palitta, V. S., K. Urban, A Very Weak Space-Time Variational Formulation for the Wave Equation: Analysis and Efficient Numerical Solution, M2AN, 2022
- A. Buenger, V. S., M. Stoll A low-rank matrix equation method for solving PDE-constrained optimization problems, SISC 2021
- Y. Hao, V. S., Matrix equation solving of PDEs in polygonal domains using conformal mappings, J. Numerical Mathematics, 2021
- Y. Hao, V. S., The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and applications, Numer. Linear Algebra w/Appl. 2021
- J. Henning, D. Palitta, V. S., K. Urban, Matrix oriented reduction of space-time Petrov-Galerkin variational problems, ENUMATH 2019,' Proceedings, Springer 2021
- V. S., Computational methods for linear matrix equations (Survey article), SIAM Review, 2016

