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Some matrix equations

> Sylvester matrix equation AX+XB+D=0
Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, PDEs, Riccati eqn

> Lyapunov matrix equation AX 4+ XAT + D =0, D=DT

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations
» Multiterm matrix equation

AXBy + Ao XBy + ...+ A XB, = C

Control, (Stochastic) PDEs, ...
Survey article: V.S., SIAM Review 2016.
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More matrix equations

> Systems of linear matrix equations:

AX+XA+B'P = F
ALY + YA+ PB = R
BX +YBT = F

(V.S., 2019)

» Riccati equation: Find X € R"*" such that
AX +XAT - XBB'™X +CTC=0

workhorse in Control Theory

» Tensor equation: Find X € R"™ ™" sych that
(HOIMRA+MOIARH+ARHR M)x+c=0 x=vec(X)

Discretization of (parameter-dependent) PDEs
(Kronecker product, (M ® N) = (M; ;N))
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‘which linear equation ‘ ‘which matrix structure‘ ‘which size

» key property: tensor product space approximation to the continuous problem

- Finite differences, e.g., Bickley & McNamee, 1960, Wachspress, 1963

- Certain spectral methods, e.g., Canuto, Hussaini, Quarteroni and Zang, 1980s
- Isogeometric Analysis (IGA)

- Space-parameter, Space-time and Parallel-in-Time (PinT) discretizations

» Symmetry, sparsity, etc., and also low-rank properties of data and solution

» Matrix equation size
Tiny Small Large
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..
What do we expect from this ?

Pros:

v/ Smaller dimensional matrices
v/ Preserve continuous problem’s properties
v Exploit structure (e.g., symmetry)

v/ Reach more complex problems
Cons:

X Extra effort to go beyond vectors
X Need to leave “comfort zone" of established NLA

X Different interpretation of your NLA data

We develop our description “by exemplification”
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The Poisson equation

—Ug — Uy, =f, in Q=(0,1)> + Dirichlet zero b.c.
FD Discretization: U;; =~ u(x;, y;), with (x;, yj) interior nodes, so that
TWU+UT =F, Fi=f(x,y), Ti= —%tridiag(l7 -2,1)
|7

Lexicographic ordering: U—u=[U1,U,1,U12,...,Upo,...

Au=f A=1@Ti+Ti®l, f=vec(F),

More generally, w/separable coefficients (and convection-diffusion)

AlUMy + MbUA, = F

A(x, y) o +(x, y)uy, = f = .
(My AU + U(A M) = F

More generally, on polygonal domain (multiterm eqn)
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-
Numerical solution of the Sylvester equation

AU+ UB=F

Various settings:
» Tiny A and B: Kron will do!

> Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)

> Large A and B: lterative solution (F low rank)

» Projection methods
» ADI (Alternating Direction lteration)

> Data sparse approaches (structure-dependent)
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-
All-at-once heat equation

up+L(u)="~ u(0) =0 (for convenience)
Variational formulation
findue U: blu,v)=(f,v) forallveV

where U:= H(l (T XN LQ(I X), X = H}(Q), V= L(Z; X)
(u, v) = [y Jqui(t,x) v(t,x) dxdt + [ a(u(t), v(t)) dt
( = fy Jo F(t,x) v(t, x) dx dt.

Discretization: Petrov-Galerkin method with trial and test spaces Us C U, Vs C V

find us € Us : b(U5, V5) = <f, V5> for all vs € Vs

with Us := Sa: ® Xp,, Vs = Qar ® X, where
Sat : piecewise linear FE on 7
Qa¢ : piecewise constant FE on 7

Xp : any conformal space, e.g., p.w. linear FE

& Well-posedness (discrete inf-sup cond) depends on the choice of Us, Vs



-
The final linear system

By us = f;

where

(Bs) (k. ey = (6%, ) a(z) (81, 87 o) + (0%, 7)) a2y a(81, 85),
[l = (F.7° ® &))@y

that is, Bs = Da: @ My, + Car @ Kp,
Remark: We approximate f5 to achieve full tensor-product structure

Resulting generalized Sylvester equation:

MuUsDa; + KyUsCar = Fs, with Fs=[g1,...,gp][h1,.... hp]"

Fs matrix of low rank = Uy approx by low rank matrix lNJ(;

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2021)
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-
A simple example

Q = (—1,1)3, with homogeneous Dirichlet boundary conditions
Z = (0,10) and initial conditions u(0, x,y,z) =0
f(t,x,y,z) = 10sin(t)t cos( 5 x) cos(5y) cos(5z) (Fs is thus low rank)

RKSM CN Time(s)

Ny N | lts  fimem rank(Us) Time(s) Direct lterative
41300 300 | 13 14 9 2596 | 12343  59.10
500 | 13 14 9 3046 | 14371 7801

700 | 13 14 9 2817 | 15338  93.03
347361 300 | 14 15 9 820.17 | 14705.10  792.42
500 | 14 15 9  828.34 | 15215.47 1041.47

700 | 14 15 7 82693 | 15017.52 121257

& Memory allocations in CN are for full problem

& Sylvester-oriented method: overall Space and Time independence

10/17
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The multiterm matrix equation problem

A1 XBy + A XBy +...+ Ac)XB,=C

A € R™" B € R™™ X unknown matrix

Kronecker form and back on track
Fixed point iterations (an “evergreen”...)
Projection-type methods = low rank approximation

Ad-hoc problem-dependent procedures

vvyyvyVvVvyy

etc.
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The multiterm matrix equation problem

A1 XBy + A XBy +...+ Ac)XB,=C

A € R™" B € R™™ X unknown matrix

Kronecker form and back on track

Fixed point iterations (an “evergreen”...)
Projection-type methods = low rank approximation
Ad-hoc problem-dependent procedures

vvyyvyVvVvyy

etc.
A sample of these methodologies on different problems:

& Stochastic PDEs
& PDEs on polygonal domains, IGA, spectral methods, etc
& Space-time PDEs
& All-at-once PDE-constrained optimization problem
& Bilinear control problems
L JN
I V. Simoncini - Advances in low-rank linear solvers 11/17
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“Ultraweak” variational formulations of the wave equation
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“Ultraweak” variational formulations of the wave equation

U(t) +Au(t)=f(t) inV', t€lae, u(0) =up € H, u(0) =u; € V'.

initial state in, say, L»(Q), initial velocity in, say, H=1(2) (very low regularity)
= weakly smooth solution

b(u(g7 V5) = g(V5) Vvs € Vs
with
b(us, vs) := (us, Vs + Avs)w,  &(vs) = (fs, vs)wn + (u1, vs(0)) — (uo, v(0))H,

* Test space Vs: proper piecewise quadratic splines in time and conformal (e.g. piecewise
quadratic) finite elements in space,

* Trial space Us: adjoint operator B* = 9y + A applied to test basis functions

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2022)
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L —
The resulting linear system

In the optimal inf-sup case, Bs = Qa¢® My+ Nar @ N,| + NI, @ N + Ma; @ Qp,
Bsus = gs Bs spd for A= —A

where
[Qaclek = (8% ")), [Mades = (% )iy [Nadek = (8% ) iy0)s

[@n]j,i == (A, Adi)iy(0),  [Milji i= (9, By, [Nlji = (Adj, 91)1,(0)-

[g6]1/ = (f7 SOV)H + (u1, <Pu(0)>v'xv - (Uo, SO.V(O))H plus quad formulas
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L —
The resulting linear system

In the optimal inf-sup case, Bs = Qa¢® My+ Nar @ N,| + NI, @ N + Ma; @ Qp,

Bsus = gs Bs spd for A= —A
where
[Qaclek = (8% ")), [Mades = (% )iy [Nadek = (8% ) iy0)s

[@n))i = (AP}, ADi) ), [Mhlji = (99 1(0)>  [Nhlji = (Ad), di)1,(0)-

[g5]y = (fy00)w + (U1, 00 (0))vixv — (to, 6,(0)) 1 plus quad formulas

1019 [ m T
—— Qa:
1014,
109,
104,
101 ke L Ll L4
1073 1072 107t
Amax
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L —
The resulting linear system

For Bs= Qa:t® My + (Nar+ Ni,) @ N, + Ma: @ Qp,

Bsus; = gs (%)

» Structure-aware Preconditioned "matrix-oriented” Conjugate gradients
»> Robust preconditioning K}M?Kg (Ms := Ma: ® My, and Ks := Na; @ My, + Ma: ® Np)
> (cheaper) Sylvester preconditioning P = Qa: ® M + Ma: ® Qp
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The resulting linear system

For Bs = Qa:® My + (Nar+ NS,) @ Ny + Ma;r ® Qp,

Bsus; = gs (%)

» Structure-aware Preconditioned "matrix-oriented” Conjugate gradients
»> Robust preconditioning K;M?K(; (Ms := Ma: ® My, and Ks := Na; @ My, + Ma: ® Np)
> (cheaper) Sylvester preconditioning P = Qa: ® M + Ma: ® Qp

> Galerkin method
Transform () into linear multiterm matrix equation:

M,UQL, + N U(NL, + Nap) + QUMp, = G, G = GG,

Approximate U as Ux = VY, W,  of low rank:
i) Properly chose Vi, W
ii) Impose Galerkin orthogonality of residual wrto Wy @ Vi
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L —
The resulting linear system

For Bs = Qa:® My + (Nar+ NS,) @ Ny + Ma;r ® Qp,

Bsus; = gs (%)

» Structure-aware Preconditioned "matrix-oriented” Conjugate gradients
»> Robust preconditioning K;M?K(; (Ms := Ma: ® My, and Ks := Na; @ My, + Ma: ® Np)
> (cheaper) Sylvester preconditioning P = Qa: ® M + Ma: ® Qp

» Galerkin method
Transform () into linear multiterm matrix equation:
M,UQ., + N} U(NS, + Nat) + QUMa; = G, G = GG,

Approximate U as Ux = VY, W,  of low rank:
i) Properly chose Vi, W
ii) Impose Galerkin orthogonality of residual wrto Wy @ Vi
This gives

(Vi My V)Y (W, QA Wi) + (VI Ny Vi) (W, (N, + Nae) W)
+ (Vi @nVi) V(W Mac W) = (V) G1)(G) W).
_ V. Simoncini - Advances in low-rank linear solvers 14 /17



-
A numerical example. Discontinuous solution.

A= —c?A (c wave speed), H = L»(Q), 2 =(0,1)3, V = H}(Q)

bp = 1r<\/§/5
=1 =4 2=16

T T ] T T ] r T T T
r —o— Galerkin B - 4 L 4
10t | —B— CG (Sylvester) 4 10t | | 10t =
N £ —— CG (K{M;'Ks) | ] S 1 r 1
S F —e— Time stepping | | . ] [ ]
5 L | [ ] L |
S 100 4 100 4 100F E
L 4 L ._.\.\. 4 L — > - B
107t e I 4 107! I i T 107t I I -

2 3 4 5 2 3 4 5 2 3 4 5

Refinement Refinement Refinement
- T T ] = L B AL At e e e L e
L —— Galerkin 1 [ ] [

1l —8— CG (Syhester) | | L i L i
10 F —— CG (K]M;'Ks) | 10 El 10
§ r —©— Time stepping | | L ] L ]
5 L | L ] L |
<100 Z\s\e E 100 E! 100 E
: ] I E—&M_ﬂ | I G- —t-E————— |
1071k ?\M‘W 4 107tk I I T 10! e s

1073 107! 10t 103 103 107! 10t 103 1072107t 10° 10! 10% 10°

Wall time [s] Wall time [s] Wall time [s]
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-
PDE-Constrained optimization problems

Functional to be minimized:

1 T o 6 T s
J(y,u):a/o. /Q(y—y) dth+§/o /Q u*dxdt
1

u

* y: is the state, y is the desired state given on a subset Q; of Q,
* u is the control on a subset 2, of Q,

(regularized by the control cost parameter 3)

PDE constraining the functional J(y, u) (Dirichlet b.c.): for instance,

y—Ay=u in Q
y—Ay=0 in Q\Q,
y=0 on 0.

& All-at-once strategy (space, time, multipliers)

& Resulting matrix equation efficiently solved by using a tailored low-rank Galerkin method

(Alexandra Biinger, V.S., and Martin Stoll, 2021)

_ V. Simoncini - Advances in low-rank linear solvers 16 /17



Further considerations

» More structure yields improved algorithmic design. For instance,
AX +XB+ M XM, =C
with My, M low rank
» Truncated versions of matrix-oriented Krylov methods have better chances

» 3D case leads to linear tensor equations: a new research area
> Matrix-oriented discretization methods for reaction-diffusion PDEs
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