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Some matrix equations

▶ Sylvester matrix equation AX+ XB + D = 0
Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, PDEs, Riccati eqn

▶ Lyapunov matrix equation AX+ XA⊤ + D = 0, D = D⊤

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

▶ Multiterm matrix equation

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Control, (Stochastic) PDEs, ...

Survey article: V.S., SIAM Review 2016.
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More matrix equations

▶ Systems of linear matrix equations:

A2X + XA1 + B⊤P = F1

A1Y + YA2 + PB = F2

BX + YB⊤ = F3

(V.S., 2019)

▶ Riccati equation: Find X ∈ Rn×n such that

AX+ XA⊤ − XBB⊤X+ C⊤C = 0

workhorse in Control Theory

▶ Tensor equation: Find X ∈ Rn×n×n such that

(H ⊗M ⊗ A+M ⊗ A⊗ H + A⊗ H ⊗M)x+ c = 0 x = vec(X)

Discretization of (parameter-dependent) PDEs

(Kronecker product, (M ⊗ N) = (Mi,jN))
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... Before proceeding:

which linear equation which matrix structure which size

▶ key property: tensor product space approximation to the continuous problem

- Finite differences, e.g., Bickley & McNamee, 1960, Wachspress, 1963
- Certain spectral methods, e.g., Canuto, Hussaini, Quarteroni and Zang, 1980s
- Isogeometric Analysis (IGA)
- Space-parameter, Space-time and Parallel-in-Time (PinT) discretizations
- ...

▶ Symmetry, sparsity, etc., and also low-rank properties of data and solution

▶ Matrix equation size

Tiny Small Large
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What do we expect from this ?

Pros:

✓ Smaller dimensional matrices

✓ Preserve continuous problem’s properties

✓ Exploit structure (e.g., symmetry)

✓ Reach more complex problems

Cons:

✗ Extra effort to go beyond vectors

✗ Need to leave “comfort zone” of established NLA

✗ Different interpretation of your NLA data

We develop our description “by exemplification”
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The Poisson equation

−uxx − uyy = f , in Ω = (0, 1)2 + Dirichlet zero b.c.

FD Discretization: Ui,j ≈ u(xi , yj), with (xi , yj) interior nodes, so that

T1U+UT⊤
1 = F , Fij = f (xi , yj), T1 = − 1

h2 tridiag(1,−2, 1)

Lexicographic ordering: U → u = [U11,Un,1,U1,2, . . . ,Un,2, . . .]
⊤

Au = f A = I ⊗ T1 + T1 ⊗ I , f = vec(F ),

More generally, w/separable coefficients (and convection-diffusion)

ϕ(x , y)uxx + ψ(x , y)uyy = f ⇒
A1UM1 +M2UA2 = F

(M−1
2 A1)U +U(A2M

−1
1 ) = F̂

More generally, on polygonal domain (multiterm eqn)
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Numerical solution of the Sylvester equation

AU +UB = F

Various settings:

▶ Tiny A and B: Kron will do!

▶ Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)

▶ Large A and B: Iterative solution (F low rank)

▶ Projection methods

▶ ADI (Alternating Direction Iteration)

▶ Data sparse approaches (structure-dependent)

V. Simoncini - Advances in low-rank linear solvers 7 / 17



Numerical solution of the Sylvester equation

AU +UB = F

Various settings:

▶ Tiny A and B: Kron will do!

▶ Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)

▶ Large A and B: Iterative solution (F low rank)

▶ Projection methods

▶ ADI (Alternating Direction Iteration)

▶ Data sparse approaches (structure-dependent)

V. Simoncini - Advances in low-rank linear solvers 7 / 17



Numerical solution of the Sylvester equation

AU +UB = F

Various settings:

▶ Tiny A and B: Kron will do!

▶ Small A and B: Bartels-Stewart algorithm (Computes the Schur form of A and B)

▶ Large A and B: Iterative solution (F low rank)

▶ Projection methods

▶ ADI (Alternating Direction Iteration)

▶ Data sparse approaches (structure-dependent)

V. Simoncini - Advances in low-rank linear solvers 7 / 17



All-at-once heat equation

ut + ℓ(u) = f u(0) = 0 (for convenience)

Variational formulation

find u ∈ U : b(u, v) = ⟨f , v⟩ for all v ∈ V

where U := H1
(0)

(I;X ′) ∩ L2(I,X ), X := H1
0 (Ω), V := L2(I;X )

b(u, v) :=
∫ τττ
0

∫
Ω ut(t, x) v(t, x) dx dt +

∫ τττ
0 a(u(t), v(t)) dt

⟨f , v⟩ :=
∫ τττ
0

∫
Ω f (t, x) v(t, x) dx dt.

Discretization: Petrov-Galerkin method with trial and test spaces Uδ ⊂ U, Vδ ⊂ V

find uδ ∈ Uδ : b(uδ, vδ) = ⟨f , vδ⟩ for all vδ ∈ Vδ

with Uδ := S∆t ⊗ Xh, Vδ = Q∆t ⊗ Xh where
S∆t : piecewise linear FE on I
Q∆t : piecewise constant FE on I
Xh : any conformal space, e.g., p.w. linear FE

♣ Well-posedness (discrete inf-sup cond) depends on the choice of Uδ,Vδ
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The final linear system

B⊤
δ uδ = fδ

where

[Bδ](k,i),(ℓ,j) = (σ̇k , τ ℓ)L2(I) (ϕi , ϕj)L2(Ω) + (σk , τ ℓ)L2(I) a(ϕi , ϕj),

[fδ](ℓ,j) = (f , τ ℓ ⊗ ϕj)L2(I;H)

that is, Bδ = D∆t ⊗Mh + C∆t ⊗ Kh

Remark: We approximate fδ to achieve full tensor-product structure

Resulting generalized Sylvester equation:

MhUδD∆t + KhUδC∆t = F δ, with F δ = [g1, . . . , gP ][h1, . . . , hP ]
⊤

Fδ matrix of low rank ⇒ Uδ approx by low rank matrix Ũδ

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2021)
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A simple example

Ω = (−1, 1)3, with homogeneous Dirichlet boundary conditions
I = (0, 10) and initial conditions u(0, x , y , z) ≡ 0
f (t, x , y , z) := 10 sin(t)t cos(π

2
x) cos(π

2
y) cos(π

2
z) (Fδ is thus low rank)

RKSM CN Time(s)

Nh Nt Its µmem rank(Ũδ) Time(s) Direct Iterative
41 300 300 13 14 9 25.96 123.43 59.10

500 13 14 9 30.46 143.71 78.01
700 13 14 9 28.17 153.38 93.03

347 361 300 14 15 9 820.17 14705.10 792.42
500 14 15 9 828.34 15215.47 1041.47
700 14 15 7 826.93 15917.52 1212.57

♣ Memory allocations in CN are for full problem
♣ Sylvester-oriented method: overall Space and Time independence
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The multiterm matrix equation problem

A1XB1 + A2XB2 + . . .+ AℓXBℓ = C

Ai ∈ Rn×n, Bi ∈ Rm×m, X unknown matrix

▶ Kronecker form and back on track

▶ Fixed point iterations (an “evergreen”...)

▶ Projection-type methods ⇒ low rank approximation

▶ Ad-hoc problem-dependent procedures

▶ etc.

A sample of these methodologies on different problems:

♣ Stochastic PDEs

♣ PDEs on polygonal domains, IGA, spectral methods, etc

♣ Space-time PDEs

♣ All-at-once PDE-constrained optimization problem

♣ Bilinear control problems

♣ ....
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“Ultraweak” variational formulations of the wave equation

ü(t) + Au(t) = f (t) inV ′, t ∈ I a.e., u(0) = u0 ∈ H, u̇(0) = u1 ∈ V ′.

initial state in, say, L2(Ω), initial velocity in, say, H−1(Ω) (very low regularity)
⇒ weakly smooth solution

b(uδ, vδ) = g(vδ) ∀vδ ∈ Vδ

with

b(uδ, vδ) := (uδ, v̈δ + Avδ)H, g(vδ) := (fδ, vδ)H + ⟨u1, vδ(0)⟩ − (u0, v̇(0))H ,

* Test space Vδ: proper piecewise quadratic splines in time and conformal (e.g. piecewise
quadratic) finite elements in space,

* Trial space Uδ: adjoint operator B
∗ = ∂tt + A applied to test basis functions

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2022)
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The resulting linear system

In the optimal inf-sup case, Bδ = Q∆t ⊗Mh +N∆t ⊗N⊤
h +N⊤

∆t ⊗Nh +M∆t ⊗Qh,

Bδuδ = gδ Bδ spd for A = −∆

where
[Q∆t ]ℓ,k := (ϱ̈ℓ, ϱ̈k )L2(I ), [M∆t ]ℓ,k := (ϱℓ, ϱk )L2(I ), [N∆t ]ℓ,k := (ϱ̈ℓ, ϱk )L2(I ),

[Qh]j,i := (Aϕj ,Aϕi )L2(Ω), [Mh]j,i := (ϕj , ϕi )L2(Ω), [Nh]j,i := (Aϕj , ϕi )L2(Ω).

[gδ]ν = (f , φν)H + ⟨u1, φν(0)⟩V ′×V − (u0, φ̇ν(0))H plus quad formulas

10−3 10−2 10−1
10−1

104

109

1014

1019

hmax

Q∆t

N∆t

M∆t

Qh

Nh

Mh

Bδ

V. Simoncini - Advances in low-rank linear solvers 13 / 17



The resulting linear system

In the optimal inf-sup case, Bδ = Q∆t ⊗Mh +N∆t ⊗N⊤
h +N⊤

∆t ⊗Nh +M∆t ⊗Qh,

Bδuδ = gδ Bδ spd for A = −∆

where
[Q∆t ]ℓ,k := (ϱ̈ℓ, ϱ̈k )L2(I ), [M∆t ]ℓ,k := (ϱℓ, ϱk )L2(I ), [N∆t ]ℓ,k := (ϱ̈ℓ, ϱk )L2(I ),

[Qh]j,i := (Aϕj ,Aϕi )L2(Ω), [Mh]j,i := (ϕj , ϕi )L2(Ω), [Nh]j,i := (Aϕj , ϕi )L2(Ω).

[gδ]ν = (f , φν)H + ⟨u1, φν(0)⟩V ′×V − (u0, φ̇ν(0))H plus quad formulas

10−3 10−2 10−1
10−1

104

109

1014

1019

hmax

Q∆t

N∆t

M∆t

Qh

Nh

Mh

Bδ

V. Simoncini - Advances in low-rank linear solvers 13 / 17



The resulting linear system

For Bδ = Q∆t ⊗Mh + (N∆t +N
⊤
∆t)⊗N⊤

h +M∆t ⊗Qh,

Bδuδ = gδ (∗)

▶ Structure-aware Preconditioned “matrix-oriented” Conjugate gradients
▶ Robust preconditioning K⊤

δ M−1
δ Kδ (Mδ :=M∆t ⊗Mh and Kδ := N∆t ⊗Mh +M∆t ⊗Nh)

▶ (cheaper) Sylvester preconditioning P = Q∆t ⊗Mh +M∆t ⊗Qh

▶ Galerkin method
Transform (∗) into linear multiterm matrix equation:

MhUQ
⊤
∆t +N

⊤
h U(N⊤

∆t +N∆t) +QhUM∆t = G , G = G1G
⊤
2

Approximate U as Uk = VkYkW
⊤
k of low rank:

i) Properly chose Vk ,Wk

ii) Impose Galerkin orthogonality of residual wrto Wk ⊗ Vk

This gives

(V⊤
k MhVk)Yk(W

⊤
k Q

⊤
∆tWk) + (V⊤

k N
⊤
h Vk)Yk(W

⊤
k (N⊤

∆t +N∆t)Wk)

+ (V⊤
k QhVk)Yk(W

⊤
k M∆tWk) = (V⊤

k G1)(G
⊤
2 Wk).
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The resulting linear system

For Bδ = Q∆t ⊗Mh + (N∆t +N
⊤
∆t)⊗N⊤

h +M∆t ⊗Qh,

Bδuδ = gδ (∗)

▶ Structure-aware Preconditioned “matrix-oriented” Conjugate gradients
▶ Robust preconditioning K⊤

δ M−1
δ Kδ (Mδ :=M∆t ⊗Mh and Kδ := N∆t ⊗Mh +M∆t ⊗Nh)

▶ (cheaper) Sylvester preconditioning P = Q∆t ⊗Mh +M∆t ⊗Qh

▶ Galerkin method
Transform (∗) into linear multiterm matrix equation:

MhUQ
⊤
∆t +N

⊤
h U(N⊤

∆t +N∆t) +QhUM∆t = G , G = G1G
⊤
2

Approximate U as Uk = VkYkW
⊤
k of low rank:

i) Properly chose Vk ,Wk

ii) Impose Galerkin orthogonality of residual wrto Wk ⊗ Vk

This gives
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A numerical example. Discontinuous solution.

A = −c2∆ (c wave speed), H = L2(Ω), Ω = (0, 1)3, V = H1
0 (Ω)

u0 = 111r<
√
2/5
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PDE-Constrained optimization problems

Functional to be minimized:

J(y , u) =
1

2

∫ T

0

∫
Ω1

(y − ŷ)2dxdt+
β

2

∫ T

0

∫
Ωu

u2dxdt

⋆ y : is the state, ŷ is the desired state given on a subset Ω1 of Ω,
⋆ u is the control on a subset Ωu of Ω,

(regularized by the control cost parameter β)

PDE constraining the functional J(y , u) (Dirichlet b.c.): for instance,

ẏ −∆y = u in Ωu,

ẏ −∆y = 0 in Ω \ Ωu,

y = 0 on ∂Ω.

♣ All-at-once strategy (space, time, multipliers)

♣ Resulting matrix equation efficiently solved by using a tailored low-rank Galerkin method

(Alexandra Bünger, V.S., and Martin Stoll, 2021)
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Further considerations

▶ More structure yields improved algorithmic design. For instance,

AX + XB +M1XM2 = C

with M1,M2 low rank

▶ Truncated versions of matrix-oriented Krylov methods have better chances

▶ 3D case leads to linear tensor equations: a new research area

▶ Matrix-oriented discretization methods for reaction-diffusion PDEs

references
- J. Henning, D. Palitta, V. S., K. Urban, A Very Weak Space-Time Variational Formulation for the Wave
Equation: Analysis and Efficient Numerical Solution, M2AN, 2022
- A. Buenger, V. S., M. Stoll A low-rank matrix equation method for solving PDE-constrained
optimization problems, SISC 2021
- Y. Hao, V. S., Matrix equation solving of PDEs in polygonal domains using conformal mappings, J.
Numerical Mathematics, 2021
- Y. Hao, V. S., The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and
applications, Numer. Linear Algebra w/Appl. 2021
- J. Henning, D. Palitta, V. S., K. Urban, Matrix oriented reduction of space-time Petrov-Galerkin
variational problems, ENUMATH 2019,’ Proceedings, Springer 2021
- V. S., Computational methods for linear matrix equations (Survey article), SIAM Review, 2016

V. Simoncini - Advances in low-rank linear solvers 17 / 17



Further considerations

▶ More structure yields improved algorithmic design. For instance,

AX + XB +M1XM2 = C

with M1,M2 low rank

▶ Truncated versions of matrix-oriented Krylov methods have better chances

▶ 3D case leads to linear tensor equations: a new research area

▶ Matrix-oriented discretization methods for reaction-diffusion PDEs

references
- J. Henning, D. Palitta, V. S., K. Urban, A Very Weak Space-Time Variational Formulation for the Wave
Equation: Analysis and Efficient Numerical Solution, M2AN, 2022
- A. Buenger, V. S., M. Stoll A low-rank matrix equation method for solving PDE-constrained
optimization problems, SISC 2021
- Y. Hao, V. S., Matrix equation solving of PDEs in polygonal domains using conformal mappings, J.
Numerical Mathematics, 2021
- Y. Hao, V. S., The Sherman-Morrison-Woodbury formula for generalized linear matrix equations and
applications, Numer. Linear Algebra w/Appl. 2021
- J. Henning, D. Palitta, V. S., K. Urban, Matrix oriented reduction of space-time Petrov-Galerkin
variational problems, ENUMATH 2019,’ Proceedings, Springer 2021
- V. S., Computational methods for linear matrix equations (Survey article), SIAM Review, 2016

V. Simoncini - Advances in low-rank linear solvers 17 / 17


