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Summary. We study the efficient solution of the linear system arising from the dis-
cretization by the mortar method of mathematical models in electrocardiology. We
focus on the bidomain extracellular potential problem and on the class of substruc-
turing preconditioners. We verify that the condition number of the preconditioned
matrix only grows polylogarithmically with the number of degrees of freedom as
predicted by the theory and validated by numerical tests. Moreover, we discuss the
role of the conductivity tensors in building the preconditioner.

1 Introduction

A macroscopic model accounting for the excitation process in the myocardium
is the ”bidomain” model that yields the following Reaction-Diffusion (R-D)
system of equations for the intra-, extracellular and transmembrane potential
ui, u and v = ui − u: find (v(x, t), u(x, t)), x ∈ Ω, t ∈ [0, T ] such that

cm∂tv − div Mi∇v + I(v) = div Mi∇u + Iapp in Ω×]0, T [
−div M∇u = div Mi∇v in Ω×]0, T [

(1)

with Mi, Me, M = Mi +Me conductivity tensors modeling the cardiac fibers,
Iapp an applied current used to initiate the process, cm the surface capacitance
of the membrane. The function I(v) is the transmembrane ionic current which
is assumed for simplicity to depend only on v and to be a cubic polynomial
(see [7]). The general R-D system can be more complex, including additional
ordinary differential equations that govern the evolution of v.

These models are computationally challenging because of the different
space and time scales involved; realistic three-dimensional simulations with
uniform grids yield discrete problems with more than O(107) unknowns at
every time step.

To improve computational efficiency, we consider a non–conforming non–
overlapping domain decomposition, within the mortar finite element method.
This allows us to concentrate the computational work only in regions of high
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electrical activity; in addition, the matching of different discretizations on
adjacent subdomains are weakly enforced. In [8, 9] we compared this technique
to the classical conforming FEM verifying its better performance.

In this paper, we focus on the problem of the efficient solution of the linear
system arising from this discretization and here for simplicity, we concentrate
on the problem with the elliptic equation of (1): for each time instant t find

u(x, t), solution of:
{
−div M∇u = div Mi∇v in Ω

nT M∇u = −nT Mi∇v on Γ.
(2)

Such problem is of interest in its own right, as it represents a separate model
for the bidomain extracellular potential [8].

We consider substructuring preconditioners and we report our numerical
experience on solving problem (2). Our experiments confirm the theory de-
picting polylogarithmic bound for the condition number of the preconditioned
matrix. Moreover, attention is devoted to tuning the preconditioner so as to
take into account the conductivity tensor M in (2).

2 Mortar Method

The computational domain Ω is decomposed as the union of L subdomains
Ω1, . . . , ΩL (see, e.g., [10]). We set Γ`n = ∂Ωn∩∂Ω`, S = ∪Γ`n and we denote

by γ
(i)
` , i = 1, . . . , 4 the i-th side of the `-th domain so that ∂Ω` =

⋃4
i=1 γ

(i)
` .

Here we consider only geometrically conforming decomposition, i.e. each edge

γ
(i)
l coincides with Γln for some n.

The Mortar Method is applied by choosing a splitting of the skeleton

S as the disjoint union of a certain number of subdomain sides γ
(i)
l , called

mortar or slave sides: we fix an index set I ⊂ {1, . . . , L}×{1, . . . , 4} such that

S =
⋃

(l,i)∈I γ
(i)
l . The index–set corresponding to trace or master sides will be

denoted by I∗: I∗ ⊂ {1, . . . , L}× {1, . . . , 4}, I∗ ∩ I = ∅ and S =
⋃

(l,i)∈I∗ γ
(i)
l .

Let the spaces X and T be X =
∏

` H1(Ω`), T =
∏

` H1/2(∂Ω`) with the
broken norms: ‖u‖2

X =
∑

` ‖u‖
2
1,Ω`

and ‖η‖2
T =

∑
` ‖η`‖2

1/2,∂Ω`
. For each `,

let also V`
h be a family of finite dimensional subspaces of H1(Ω`) ∩ C0(Ω̄`),

depending on a parameter h = h` > 0, Xh =
∏L

`=1 V
`
h ⊂ X , T `

h = V`
h|∂Ω`

and

Th =
∏L

`=1 T `
h ⊂ T . Then we define two composite bilinear forms aX , ai

X :
X × X−→R as:

aX(u, φ) =
∑

`

∫

Ω`

∇φT
l M∇u` dx, ai

X(u, φ) =
∑

`

∫

Ω`

∇φT
l Mi∇u` dx. (3)

Since these bilinear forms are not coercive on X , we consider proper subspaces
of X consisting of functions satisfying a suitable weak continuity constraint,
leading to the following constrained approximation and trace spaces
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Xh = {vh ∈ Xh,

∫

S

[vh]λds = 0, ∀λ ∈ Mh} (4)

Th = {η ∈ Th,

∫

S

[η]λds = 0, ∀λ ∈ Mh}, (5)

with Mh a suitably chosen finite dimensional multiplier space. We can write
the discrete problem, whose solution existence was proved in [8, Theorem 3.1]:

Problem 1. Find uh ∈ Xh such that for all φh ∈ Xh

aX(uh, φh) = −ai
X(vh, φh). (6)

We remark that Problem 1 admits a solution unique up to an additive constant
related to the reference potential chosen. In this paper we consider as reference
potential the one given by the potential at a reference point x0 ∈ Ω.

3 Substructuring Preconditioners

A key aspect of substructuring preconditioners is that they distinguish among
three types of degrees of freedom: interior (corresponding to basis functions
vanishing on the skeleton and supported on one sub-domain), edge and vertex

degrees of freedom [4, 1]. Thus, each function u ∈ Xh can be written as the
sum of three suitably defined components: u = u0+uE +uV . More specifically,
let w = (w`)`=1,··· ,L ∈ Xh be any discrete function, then

w = w0 + Rh(w), w0 ∈ X 0
h , (7)

with w0 ∈ X 0
h interior function and Rh(w) a discrete lifting, i.e. Rh(w) =

(R`
h(w`))`=1,...,K , where R`

h(w`) is the unique element in V`
h satisfying R`

h(w`)
= w` on Γ` and

∫

Ω`

∑

i,j

M
∂

∂xi

∂

∂xj
R`

h(w`)v
`
h dx = 0, ∀vh ∈ V`

h. (8)

Consequently, the spaces Xh and Xh can be split as:

Xh = X0
h ⊕ Rh(Th) Xh = X 0

h ⊕ Rh(Th)

and it can be verified that

aX(w, v) = aX(w0
, v

0) + aX(Rh(w), Rh(v)) = aX(w0
, v

0) + s(η(w), η(v)), (9)

where the discrete Steklov-Poincaré operator s : Th × Th → R is defined by

s(ξ, η) :=
∑

`

∫

Ω`

(M(x)∇R`
h(ξ)) · ∇R`

h(η). (10)
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Furthermore the space of constrained skeleton functions Th can be split as
the sum of vertex and edge functions. More specifically, denoting by L ⊂∏L

`=1 H1/2(∂Ω`) the space L = {(η`)`=1,··· ,L, η` is linear on each edge of Ω`},
then we can define the space of constrained vertex functions as

T V
h = PhL (11)

with Ph the correction operator imposing the constraint. We make the (not
restrictive) assumption L ⊂ Th, which yields T V

h ⊂ Th, and we introduce the
space of constrained edge functions T E

h ⊂ Th defined by

T E
h = {η = (η`)`=1,··· ,L ∈ Th, η`(A) = 0, ∀ vertex A of Ω`}. (12)

We can easily verify that Th = T V
h ⊕ T E

h .
Then we will consider a block Jacobi type preconditioner s̃ : Th ×Th−→R

defined as
s̃(η, ξ) = bV (ηV , ξV ) + bE(ηE , ξE) (13)

with blocks related to the following edge and vertex global bilinear forms

bE : T E
h × T E

h −→R such that bE(ηE , ηE) ' s(ηE , ηE)
bV : T V

h × T V
h −→R such that bV (ηV , ηV ) ' s(ηV , ηV ).

(14)

3.1 Matrix form

In this section we derive the matrix form of the discrete Steklov-Poincaré
operator s in (10). Equation (6) yields the following linear system of equations:

Au = b with b = −Aiv, (15)

where A, Ai are the stiffness matrices associated to the discretization of aX , ai
X

defined in (3). It can be shown that the matrix A is positive semidefinite and
the system is consistent.

We reorder the vector of unknowns as: u = (u0,uE ,uV ,uS)
T

, with
u0,uE ,uV ,uS interior, edge, vertex and slave nodes, respectively. From the
mortar condition, it follows that the interior nodes of the multiplier sides are
not associated with genuine degrees of freedom in the FEM space. Indeed, the
value of the coefficients uS corresponding to basis functions “living” on slave
sides is uniquely determined by the remaining coefficients through the jump
(mortar) condition and can be eliminated from the global vector u, i.e.

CSuS = −CEuE − CV uV uS =: QEuE + QV uV (16)

where QE = −C−1
S CE , QV = −C−1

S CV . The entries of CS , CE , CV are given
by cij =

∫
γm

[φj ]λi ds, λi ∈ Mh with φj corresponding to the different nodal
basis functions on the slave and master side and associated with the vertices.
Since biorthogonal basis functions are employed, the square matrix CS is
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diagonal and easily invertible (cf. [11]). The reduction in (16) may be written
in matrix form as

u = Q




u0

uE

uV



 with Q =




I0 0 0
0 IE 0
0 0 IV

0 QE QV


 (17)

where Q is a global “switching” matrix. The resulting reduced system is thus
given by

ÃuM = b̃ (18)

with Ã = QTAQ and b̃ = QTb. We note that the (1,1) block in Ã is cheaply
invertible therefore, the Schur complement of the system relative to the (1,1)
block can readily be obtained, yielding the further reduced system

S

(
uE

uV

)
=

(
b̂E

b̂V

)
.

The Schur complement S represents the matrix form of the Steklov-Poincaré
operator s(·, ·). To obtain the matrix form of s̃(·, ·) we consider the space L

of linear functions, used in the splitting of the trace space (11). Then, we
introduce an interpolation map denoted by RT

H (say piecewise interpolation)
from the nodal value on V (vertices) onto all nodes of S. The matrix RH can
be viewed as the weighted restriction map from S onto V . By defining the

square matrix J =

((
IE

O

)
RH

)
, with IE the nE × nE identity matrix, we

can derive the new Schur complement matrix S̃, after the “vertex” correction,

S̃ = JT SJ =

(
S̃E S̃EV

S̃T
EV S̃V

)
. (19)

3.2 The preconditioner

We describe a generalization of a known optimal preconditioner for S̃, and
some more computationally effective variants. The matrix discretization of
the form s̃ yields the following (block-Jacobi type) diagonal preconditioner

P =

(
PE 0
0 PV

)
,

where PE , PV are the matrix counterparts of the bilinear forms bE and bV in
(14), respectively.

It can be verified that the preconditioned matrix P−1S satisfies the theory
developed in [1, 3] so that

cond(P−1S̃) .

(
1 + log

(
H

h

))2

. (20)
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with H size of the subdomains and h finest meshsize of the finite element
spaces used. Moreover, if an auxiliary coarse mesh is chosen for the vertex
block with mesh size δ > h as studied in [3], then a similar estimate can be

obtained but with a factor
(
1 + log

(
H
h

))3
.

The next three variants make the preconditioner above computationally
more appealing with no essential loss of optimality. This goal is achieved by
replacing either or both the edge and vertex blocks PE and PV with more con-
venient approximations. In their construction, we were inspired by a similar
approach first proposed in [4, 1, 3] for elliptic problems. For later consider-
ations, we recall here an important bound for the condition number of the
preconditioned matrix, expressed in terms of the preconditioning quality of
the two diagonal blocks. More precisely, let P = diag(P1, P2) be a Jacobi-
type preconditioner, and let µM = max{λmax(P

−1
1 S̃E), λmax(P

−1
2 S̃V )}, µm =

min{λmin(P−1
1 S̃E), λmin(P−1

2 S̃V )}. Then

cond(P−1S̃) ≤
1 + γ

1 − γ

µM

µm
γ ≤ 1, (21)

where 1 + γ is the largest eigenvalue of the preconditioned matrix obtained
by using the block diagonal of S̃ as preconditioner P (see, e.g., [6]).

Following [1, 4] a simple approach consists in dropping all couplings be-
tween different edges and between edges and vertex points: PE is replaced by
its block diagonal part with one block for each mortar. This simplification
provides our first variant,

P1 =

(
P diag

E 0
0 PV

)
.

Assembling the edge and vertex block preconditioner with such a choice
could be quite expensive. A more efficient preconditioner may be obtained by
approximating the edge block PE of P as

P
(R)
E = αR

where R is the square root of the stiffness matrix associated on each edge to the
discretization of the operator −d2/dx2 with homogeneous Dirichlet conditions
at the extrema [4, 5, 10]. The choice of the parameter α is discussed below.
Thus our second variant is

P2 =

(
P

(R)
E 0
0 PV

)
.

It can be easily verified that (cf., e.g., [4, 5])

c1 vT S̃E v ≤ vT Rv ≤ c2

(
1 + log

(
H

h

))2

vT S̃E v (22)
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where c1, c2 are independent of H, h but may depend on the coefficients of
M(x). Since PV = S̃V , in (21) we obtain µM = max{λmax((αR)−1S̃E), 1} ≤

max{α−1c2

(
1 + log

(
H
h

))2
, 1}. Analogously, µm ≥ min{α−1c1, 1}. Therefore,

the determination of µM , µm is influenced by the magnitude of c1, c2 and of α.
The anisotropic conductivity tensor M = Mi +Me is given as Ms = Ms(x) =
σs

t I + (σs
l − σs

t )aa
T , s = i, e, where a = a(x) is the unit vector tangent to

the cardiac fiber at a point x ∈ Ω, I is the identity matrix and σs
l , σ

s
t for

s = i, e are the conductivity coefficients along and across fiber, in the (i)
and (e) media, assumed constant with σs

l > σs
t > 0. As already mentioned,

the magnitude of c1, c2 depends on the conductivity coefficients. Therefore, to
minimize the bound on the condition number in (21), it is standard practice to
select α of the same order of magnitude as the conductivity coefficients [5]. In
our case, by choosing α as ‖M‖ ≤ 2σt +σ` =: α we optimize the upper bound
µM with respect to the conductivity coefficients. Since α � 1, this value of
α usually also leads to the lower estimate µm = 1. Numerical experiments
validated this choice.

Our third variant copes with the already mentioned fact that building PV

becomes expensive when grid refinements are required. Various choices have
been discussed in the literature [10]; for instance, in [3] the vertex precon-
ditioner was chosen as the vertex block of the Schur complement matrix on
a fixed auxiliary coarse mesh, independent of the space discretization. We
thus approximate PV with the matrix PV c obtained with a fixed coarse mesh,
yielding

P3 =

(
P

(R)
E 0
0 PV c

)
.

This variant leads to very moderate (close to unit) values of λmin(P
−1
V c S̃V )

and λmax(P
−1
V c S̃V ) to achieve an estimate in (21). Therefore, we maintained

the selection of α as discussed above.
In Table 1 we report numerical experiments with the preconditioners P1, P2

and P3 for the Schur complement system associated with the matrix in (19).
The results are in close agreement with the theory: the condition number of
the preconditioned matrix grows at most polylogarithmically with the number
of degrees of freedom per subdomain, as indicated by (20). The columns with

α = 1 refer to such parameter selection in P
(R)
E . This corresponds to discard-

ing information on the conductivity tensor M in (2). The worse convergence
validates our choice and shows the importance of an appropriate choice of the
parameter. Note that the selected value of α was more effective than other
choices of similar magnitude. Indeed choosing α = σl and α = σt for N2 = 256,
n = 5, 10, 20, 40 (fourth row in the table) and P3, we obtained 29, 31, 33, 34
and 42, 45, 48, 49, respectively. In summary, our experiments demonstrate that
the proposed variants allow us to limit the computational cost (the cost of

forming P
(R)
E and PVc

is much lower than that for their original counterparts),
with basically no loss in convergence rate, for the appropriate scaling factor.
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Table 1. Number of conjugate gradient iterations needed to reduce the residual of
a factor 10−5 with the preconditioners P1, P2, P3 and P2, P3 with α = 1. K = N2 :
# of subdomains. n2 : # of elements per subdomain. Symbol ‘*’: the preconditioner
P1 could not be built due to memory constraints.

P1 P2 P2 α = 1 P3 P3 α = 1
N2\n 5 10 20 40 5 10 20 40 5 10 20 40 5 10 20 40 5 10 20 40

16 26 26 29 31 26 26 28 31 24 28 33 37 26 27 27 30 24 50 64 83
64 25 26 27 29 25 27 27 29 24 29 35 39 25 27 28 32 24 51 71 89

144 25 27 27 30 25 28 28 29 27 33 38 42 25 27 28 32 27 54 75 94
256 25 28 29 30 25 28 28 29 29 36 41 46 25 27 28 30 29 55 75 95
400 25 27 29 * 25 28 28 29 31 38 44 50 25 27 28 30 31 56 75 95
576 24 27 28 * 25 27 27 29 34 41 47 53 25 27 27 29 34 57 77 97
784 25 26 27 * 25 25 27 28 36 44 50 56 25 25 27 29 36 55 78 98
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