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Abstract We deal with the efficient solution of the so-called bidomain system
which is possibly the most complete model for the cardiac bioelectric activity.
We study the performance of a non-symmetric structured algebraic multigrid
preconditioner on the formulation generally used of the bidomain model, i.e.
the one characterized by a parabolic equation coupled with an elliptic one.
Our numerical results show that, for this formulation, the non-symmetric
preconditioner provides the best overall performance.

1 The Bidomain Model

The excitation process in the myocardium is a complex phenomenon charac-
terized by rapid ionic fluxes through the cellular membrane separating the
intracellular and the interstitial fluid in the myocardium [7]. The bidomain is
the most complete model for the cardiac bioelectric activity, and it consists
of a non-linear Reaction-Diffusion (R-D) system of equations for the intra-
and extracellular potential ui and ue, coupled through the transmembrane
potential v := ui−ue [9]. The nonlinearity arises through the current-voltage
relationship across the membrane which is described by a set of nonlinear
ODEs (see [7]). The anisotropic properties of the media are modeled by the
intra- and extracellular conductivity tensors Mi = Mi(x) and Me = Me(x)
that satisfy a uniform ellipticity condition, see [10].
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1.1 (ue, v) formulation

The R-D system governing the cardiac electric activity may be written in
various forms involving different combinations of the variables ui, ue, v; see,
e.g., [12]. Here we deal with the formulation generally used for the numerical
simulations, i.e. with a parabolic equation for the transmembrane potential
v coupled with an elliptic equation for the extracellular potential ue:
find (v(x, t), ue(x, t)), x ∈ Ω, t ∈ [0, T ] such that















cm∂tv − div Mi∇v + Iion = div Mi∇ue + Iapp in Ω×]0, T [
−div M∇ue = div Mi∇v in Ω×]0, T [
n

T Mi∇v = 0, n
T M∇ue = 0 on Γ×]0, T [

v(x, 0) = 0 in Ω.

(1)

with M = Mi + Me bulk conductivity tensor. Due to the presence of dif-
ferent time and space scales, the numerical solution of the bidomain system
represents a very intensive computational task: realistic three dimensional
simulations typically yield discrete problems with millions of unknowns, and
time steps of the order of 10−2 milliseconds or less. To reduce the compu-
tational cost, different numerical techniques have been developed and are
currently under investigation [4, 5, 6, 8, 11, 17]. Here we employ a semi-
implicit method in time, that only requires the solution of linear systems at
each time step and allows performing larger time steps than explicit schemes.
By using a finite element discretization in space and a semi–implicit scheme
in time, we get:

Bξk+1 = b with B =

[

Ct + Ai Ai

Ai (Ai + Ae)

]

, (2)

with b =
[

Ct v
k − Ih

ion(vk) + Ih
app;0

]

, vk = ui
k−ue

k, ξk+1 =
[

v
k+1;ue

k+1
]

.
Whatever the method chosen for discretizing the problem, a huge compu-

tational effort is required to solve the associated linear system in (2) at each
time step, whose conditioning considerably worsens as the problem dimension
increases, resulting in an unacceptable increase in the computational costs of
the whole simulation. Preconditioning is therefore mandatory. Attempts in
the recent literature have employed diagonal preconditioners, Symmetric Suc-
cessive Over Relaxation [10], Block Jacobi preconditioners with incomplete
LU factorization (ILU) [18], multigrid [1, 13]; see [19] for an overview.

Classically, the system with B was solved by means of a nested iteration
that can be explicitly stated as a block Gauss–Seidel method involving the
two diagonal blocks. More recent publications have demonstrated that ap-
propriately preconditioned Krylov subspace methods can largely outperform
these classical methods; see [11, 12] and references therein. In this paper we
study a nonsymmetric block triangular precoditioner for the system in (2).
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2 Block Preconditioners

In the coefficient matrix B in (2), the (1,1) block is positive definite while the
(2,2) block is only positive semi-definite. Moreover, all matrices are square
and symmetric. It is therefore natural to derive preconditioners that exploit
this structure, as is the case in various multilevel methods as well as in saddle
point problems [2]. In [12] we analyzed symmetric structured preconditioners
and in particular a block diagonal preconditioner Pd and a block factorized
preconditioner Pf :

Pd = blockdiag(K,D), Pf =

[

I O
AiK

−1 I

] [

K Ai

O D

]

, (3)

where K is a symmetric and positive definite approximation to the (1,1)
block, while D is a symmetric and positive definite approximation either to
the Schur complement (Ai + Ae) − Ai(Ct + Ai)

−1Ai, or to the (2,2) block
Ai + Ae. Note that for K = Ct + Ai and D = (Ai + Ae) − Ai(Ct + Ai)

−1Ai

then Pf = B. In [12] we also experimentally verified that more general struc-
tured preconditioners may also be appealing. For instance, the following “one-
sided” version of Pf has been used for symmetric (indefinite) saddle point
problems (see, e.g., [2]):

PM =

[

K Ai

O D

]

.

If K and D exactly reproduce the (1,1) block and the Schur complement,
respectively, the nonsymmetric preconditioned matrix would be the matrix

BP−1

M =

[

I O
Ai(Ct + Ai)

−1 I

]

,

whose spectrum consists of the single unit eigenvalue, so that a minimal resid-
ual method such as GMRES ([15]) would converge in at most two iterations.
In general, the behavior of the approximate versions of K and D is less pre-
dictable; moreover, a good approximation of the Schur complement may be
very expensive to obtain. The performance of PM within the indefinite sad-
dle point context highly overcomes its nonsymmetric nature. The situation
is considerably different in our context, where the original matrix is positive
(semi)definite. Applying PM destroys symmetry. Remarkably, however, the
use of PM in our 2D problem provides some interesting numerical results, as
already shown in [12]. Here we would like to complete the analytical analysis
of this preconditioner for the other ideal case D = Ai +Ae, or when K and D
are spectrally equivalent approximations to the ideal cases. In the following
we assume that A−1

i stands for the pseudo-inverse whenever the matrix is
singular. Singularity does not effect the analysis as all vectors are assumed
to lie in the range of the considered matrices. For K = Ai +Ct, D = Ai +Ae,
it can be easily verified that
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BP−1

M =

[

I O
Ai(Ai + Ct)

−1 I − S

]

, S = Ai(Ai + Ct)
−1Ai(Ai + Ae)

−1. (4)

The following result shows that the spectrum of BP−1

M is bounded indepen-
dently of the mesh parameter for judiciously chosen D.

Theorem 1. With the previous notation, let K = Ai + Ct and let X be an

eigenvector matrix of BP−1

M . If D = Ai + Ae, then

λmin(BP−1

M ) = 1 − µ λmax(BP−1

M ) = 1, X =

[

I O
(Ai + Ae)A

−1

i Y

]

,

with µ ≤ (1+λmin(Ae, Ai))
−1, µ constant independent of h, and Y eigenvector

matrix of I − S.

If instead D is such that there exist positive constants α1, α2 such that

α1x
T Dx ≤ xT (Ai +Ae)x ≤ α2x

T Dx for all x in the range of Ai +Ae, then

either λ(BP−1

M ) = 1 or α1(1 − µ) ≤ λ(BP−1

M ) ≤ α2, with µ defined above.

Moreover,

X =

[

I O
M Y

]

,

with M = −(G − I)−1Ai(Ai + Ct)
−1, G = (Ai + Ae − Ai(Ct + Ai)

−1Ai)D
−1

and Y eigenvector matrix of G.

Proof. We shall see that the eigenvalues of S are real and non-negative. From
the structure of the matrix BP−1

M it thus follows that λmin(BP−1

M ) = 1 −
λmax(S) and λmax(BP−1

M ) = 1. To analyze the eigenvalues λ of S we consider
the eigenvalue problem

Ai(Ai+Ct)
−1Ai(Ai+Ae)

−1x = λx ⇔ Ai(Ai+Ct)
−1Aiu = λ(Ai+Ae)u.

Clearly, λ = 0 for u ∈ N(Ai) = N(Ae) = N(Ai + Ae). Moreover, since the
matrices on both sides are symmetric and positive definite in the range of
Ai, Ae, λ ≥ 0. We can write

λ =
u

T Ai(Ai + Ct)
−1Aiu

uT (Ai + Ae)u
, u /∈ N(Ai).

Thanks to [12, Lemma 4.1] we obtain that λ ≤ (1+λmin(Ae, Ai))
−1 < 1. Us-

ing the conductivity coefficients defined in Section 5 of [12], the two stiffness
matrices are related as c1v

T Aev ≤ v
T Aiv ≤ c2v

T Aev independently of the
mesh. Thus, λmin(Ae, Ai) is bounded by a quantity that only depends on the
conductivity tensors of the two stiffness matrices, and not on the grid. This
completes the proof for D = Ai + Ae. One can readily verify that X satisfies
BP−1

M X = Xblockdiag(I, I −Λ), where Λ is the eigenvalues matrix of I −S.
For general D we have
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BP−1

M =

[

I O
Ai(Ai + Ct)

−1 I

] [

I O
O (Ai + Ae − Ai(Ct + Ai)

−1Ai)D
−1

]

.

The eigenvalues θ’s of the (2,2) block in the second factor satisfy

θ =
xT (Ai + Ae − Ai(Ct + Ai)

−1Ai)x

xT Dx

=
xT (Ai + Ae)x

xT Dx

(

1 −
xT Ai(Ct + Ai)

−1Aix

xT (Ai + Ae)x

)

= γ1γ2.

Using the spectral equivalence of D, we have α1 ≤ γ1 ≤ α2. Moreover, using
the definition of µ above, (1 − µ) ≤ γ2 ≤ 1, from which the result follows.
The fact that the given X is an eigenvector matrix can be readily verified.

We observe that due to the matrix structure, we expect cond(X ) to be
mesh independent in the exact case (K = Ai + Ct, D = Ai + Ae). A spectral
analysis when K is an approximation to the (1,1) block, that is it is not exact,
is much more involved. With a convenient splitting of B, we write

BP−1

M =

([

K Ai

Ai D

]

+

[

Ct + Ai − K O
O (Ai + Ae) − D

])

P−1

M

=

[

I O
AiK

−1 I − AiK
−1AiD

−1

]

+

+

[

(Ct + Ai − K)K−1 −(Ct + Ai − K)K−1AiD
−1

O (Ai + Ae − D)D−1

]

≡ R + E.

If K, D are spectrally equivalent to Ai + Ct and Ai + Ae respectively, the
spectrum of R is also spectrally equivalent to that of the exactly precondi-
tioned matrix (the one obtained for K = Ai +Ct, D = Ai +Ae). The matrix
E represents a perturbation to the ideal case, and its size depends on the
accuracy of the preconditioning blocks.

Assume that all relevant1 eigenvalues of the (2,2) block of R are less than
one, and let X be an eigenvector matrix of R; in fact, it is possible to derive
a more explicit structure for X, but such a description is beyond the scope
of this paper. Then we have (cf, e.g., [16])

|λ(BP−1

M ) − λ(R)| ≤ ‖X−1EX‖ ≤ cond(X)‖E‖,

where cond(X) is the spectral condition number of X and ‖ · ‖ is the matrix
norm induced by the Euclidean vector norm. Therefore, if K and D are good
approximations to the corresponding blocks, then we expect the spectrum
of BP−1

M not to deviate significantly from that of R, unless the eigenvector
matrix X is very ill conditioned. If the condition number of the eigenvector
matrix of BP−1

M is moderate (cf. Th. 1), we also expect that a nonsymmetric

1 That is, those associated to eigenvectors in the range of the given matrices.
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solver like GMRES will converge in approximately the same number of itera-
tions as for the exact case, whenever K, D are appropriately chosen. Spectral
mesh independence can also be expected in this case. Our numerical results
fully confirm all these considerations, as reported in Table 1.

3 Numerical results

In this section we report on our experiments with the exact and “inexact”
versions of the block triangular preconditioner PM . We consider a square do-
main Ω = [0, 1]2 modeling a block of myocardium with cardiac fibers parallel
to a diagonal of the square and the conductivity coefficients defined as in
[12]. The meshes considered on Ω were built by using a Delaunay triangula-
tion algorithm. The number of mesh nodes for each refined grid was 2n with
n ∈ {2705, 10657, 42305, 168577, 673025}, whereas the time step τ was chosen
to be equal to 4

·
10−2 msec. All experiments correspond to a typical tempo-

ral instant in the time step evolution, so that the right–hand side includes
information generated during the previous time steps. All computations were
performed with Matlab 7.4.0 (R2007a) on a iMac Intel Core 2 Duo 2 GbRAM
2.66GHz and 6Mb L2 cache.

In the approximate (inexact) case, the matrices K and D are implicitly
defined by applying an Algebraic MultiGrid (AMG) method to approximate
the corresponding blocks. As in [12], we reorder each block matrix of B by
using the matlab function symrcm. We employ the AMG code available in the
HSL library, the hsl mi20 routine, equipped with a Matlab interface [3]. This
function implements the classical (Ruge-Stüben) AMG method, as described
in [14]. The code was used as a black box: Gauss-Seidel smoothing was used
in all instances. The multilevel method is often built on originally singular
matrices. To increase the robustness of the preconditioning strategy, in some
cases we generated the preconditioner by using a shifted (nonsingular) matrix,
with a shift equal to ε1/2 and ε ≈ 10−16 the Matlab machine precision.

Table 1 CPU time and number of iterations (in parenthesis) for: Pf with AMG;
PM with exact and AMG-based blocks, when using the nonsymmetric solver GMRES,
FOM and the symmetric solver CG (with regularization). Here K= AMG(Ct + Ai)
and D= AMG(Ai + Ae).

Pf exact PM AMG-based PM

n cg gmres gmres fom cg

2705 0.41 (6) 1.1 (21) 0.38 (6) 0.15 (6) 0.27 (6) 0.32 (22)
10657 0.88 (7) 2.98 (13) 1.95 (7) 0.5 (7) 0.52 (7) 0.64 (12)
42305 2.82 (8) 11.85 (11) 8.92 (7) 2.15 (8) 2.17 (8) 2.07 (10)

168577 9.92 (8) 58.11 (11) 44.83 (7) 8.99 (8) 9.06 (8) 8.27 (10)
673025 47.47 (10) 315.49 (10) 249.95 (7) 41.02 (9) 41.32 (9) 36.21 (11)
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All our results are displayed in Table 1 for the considered discretization
meshes: we report CPU times (in seconds) and in parenthesis number of it-
erations. In the second column we recall the numbers to obtain a reduction
of the residual norm by a factor of 10−6, with the best performing precon-
ditioner analyzed in detail in [12], namely Pf and AMG for computing K
and D. The subsequent two columns show the performance of the exact pre-
conditioner PM , namely with K = Ai + Ct and D = Ai + Ae, when using
either the nonsymmetric solver GMRES or CG (see below for further com-
ments on the latter method). The last columns show the performance of PM

when AMG is used to build K and D as approximations to Ai + Ct and
Ai + Ae, respectively. Note that a sparse direct solver employs 26.15 secs,
after a proper reordering, to solve the whole system in (2) for n=168577 (an
“out of memory” results for n=673025). The reported timings clearly confirm
the competitiveness of the AMG-based preconditioner compared to the exact
version and the sparse direct solver. In particular, results are reported for
the minimal residual method GMRES, and for both FOM (Full Orthogonal-
ization Method) and CG [15]. If the preconditioned problem were symmetric
and positive definite, then FOM and CG would be mathematically equiva-
lent. Since BP−1

M is nonsymmetric, we expect CG to behave more poorly than
FOM, which is a Galerkin-type method devised for nonsymmetric problems.
It is however quite surprising that CG converges very quickly in spite of the
full nonsymmetry of the problem. In Figure 1 we display the convergence
history of the methods, in terms of residual norms: the CG curve deviates
from the expected one, represented by FOM, as soon as nonsymmetry is de-
tected. However, the spectral properties are so favourable that nonsymmetry
does not prevent the method from converging in just a few more iterations.
In fact, CG may be viewed in this case as a (highly) truncated full orthog-
onalization procedure; see, e.g. [12] and references therein. Due to the very
cheap short-term recurrence, the CG timings are also very competitive; cf.
the last column of Table 1.

In the exact case, our theory predicts mesh independence, and this is
confirmed in the table. In addition, the use of AMG preconditioning maintains
mesh independence in the inexact case, with in general a number of iterations
only slightly higher than in the exact case.
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Fig. 1 Convergence his-
tory of FOM and CG on
the nonsymmetric matrix
BP

−1

M , n = 2705.
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