Rational Krylov subspaces for Hermitian matrices properties and applications

Valeria Simoncini

Dipartimento di Matematica
Alma Mater Studiorum - Università di Bologna
valeria.simoncini@unibo.it

Where it all started...

Householder Symposium XII on Numerical Algebra, Lake Arrowhead, CA, June 1993

My (very) personal recollection of the meeting's highlights:

- A beautiful venue (nice bungalows, tennis court, good food, ...)
- Alston Householder attended! (shortly before he passed away)
- An impressive number of other important people

Report on SIAM News by Stephen Vavasis

18. August 1993 SIAM NEWS

Where it all started...

That is where I first met Michele Benzi...
\star Both being Italian

Where it all started...

That is where I first met Michele Benzi...

In spite of
\star Both being Italian

* Both coming from Univ. Bologna (and its Math department)

Where it all started...

That is where I first met Michele Benzi...

In spite of

* Both being Italian
\star Both coming from Univ. Bologna (and its Math department)

The Gatlinburg leaders

One of the subsequent generations

Michele's model

Since then, he has been rocking a more furtive appearance

Going to the math

CIME Summer School, 2015

Unveiling hidden structure. Two recent instances:

- Decay "without" banded structure
- Short-term recurrences "without" symmetric structure

Going to the math

CIME Summer School, 2015

Unveiling hidden structure. Two recent instances:

- Decay "without" banded structure
- Short-term recurrences "without" symmetric structure

Decay of matrix function entries

The classical bound (Demko, Moss \& Smith):
A spd and banded with bandwidth β, then

$$
\left|\left(A^{-1}\right)_{i j}\right| \leq \gamma q^{\frac{|i-j|}{\beta}}, \quad q:=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}<1(\kappa=\operatorname{cond}(A))
$$

If f analytic in region containing $\operatorname{spec}(A)$:
with C, a denending on $\operatorname{spec}(A)$ and $f($ Benzi \& Golub, 1999)
\% Large number of contributions and large evidence of applicability

Decay of matrix function entries

The classical bound (Demko, Moss \& Smith):
A spd and banded with bandwidth β, then

$$
\left|\left(A^{-1}\right)_{i j}\right| \leq \gamma q^{\frac{|i-j|}{\beta}}, \quad q:=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}<1(\kappa=\operatorname{cond}(A))
$$

If f analytic in region containing $\operatorname{spec}(A): \quad\left|f(A)_{i j}\right| \leq C q^{\frac{|i-j|}{\beta}}$ with C, q depending on $\operatorname{spec}(A)$ and $f($ Benzi \& Golub, 1999)
\& Large number of contributions and large evidence of applicability

Decay of matrix function entries

The classical bound (Demko, Moss \& Smith):
A spd and banded with bandwidth β, then

$$
\left|\left(A^{-1}\right)_{i j}\right| \leq \gamma q^{\frac{|i-j|}{\beta}}, \quad q:=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}<1(\kappa=\operatorname{cond}(A))
$$

If f analytic in region containing $\operatorname{spec}(A): \quad\left|f(A)_{i j}\right| \leq C q^{\frac{|i-j|}{\beta}}$
with C, q depending on $\operatorname{spec}(A)$ and $f($ Benzi \& Golub, 1999)
\& Large number of contributions and large evidence of applicability

Decay of matrix function entries - non-Hermitian case

[Pozza - Simoncini 2019] Let A be banded with bandwidths (β, γ) with field of values contained in a convex continuum E. Moreover, let ϕ be the conformal map sending the exterior of E onto the exterior of the unitary disk, and let ψ be its inverse. For any $\tau>1$ so that f is analytic on the level set G_{τ} defined as the complement of the set
$\{\psi(z):|z|>\tau\}$, we get a

$$
\left|(f(A))_{k, \ell}\right| \leq 2 \frac{\tau}{\tau-1} \max _{|z|=\tau}|f(\psi(z))|\left(\frac{1}{\tau}\right)^{\xi}
$$

$$
{ }^{\mathrm{a}} \xi:= \begin{cases}\lceil(\ell-k) / \beta\rceil, & \text { if } k<\ell \\ \lceil(k-\ell) / \gamma\rceil, & \text { if } k \geq \ell\end{cases}
$$

Earlier refs for non-normal matrices:
Benzi - Razouk 2007, Mastronardi - Ng - Tyrtyshnikov 2010 Iserles 2000, Benzi - Boito 2014, Wang - Ye 2017, etc.

A more subtle setting. First the easy case.

Given a matrix $A \in \mathbb{R}^{N \times N}$ with spectrum $\lambda(A)$ and a vector $\boldsymbol{v} \neq 0$:
Polynomial Krylov recurrence
the m th step of the Arnoldi algorithm produces the $N \times m$ matrix $U_{m}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right]$ whose orthonormal columns are a basis of the (polynomial) Krylov subspace $\mathcal{K}_{m}(A, \boldsymbol{v})$, and

$$
A U_{m}=U_{m} T_{m}+t_{m+1, m} \boldsymbol{u}_{m+1} \boldsymbol{e}_{m}^{T},
$$

with $T_{m} m \times m$ upper Hessenberg matrix.

Note: $T_{m}=U_{m}^{*} A U_{m}$ (but also contains the orth coefficients)

A more subtle setting. First the easy case.

Given a matrix $A \in \mathbb{R}^{N \times N}$ with spectrum $\lambda(A)$ and a vector $\boldsymbol{v} \neq 0$:
Polynomial Krylov recurrence
the m th step of the Arnoldi algorithm produces the $N \times m$ matrix $U_{m}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right]$ whose orthonormal columns are a basis of the (polynomial) Krylov subspace $\mathcal{K}_{m}(A, \boldsymbol{v})$, and

$$
A U_{m}=U_{m} T_{m}+t_{m+1, m} \boldsymbol{u}_{m+1} \boldsymbol{e}_{m}^{T},
$$

with $T_{m} m \times m$ upper Hessenberg matrix.

Note: $T_{m}=U_{m}^{*} A U_{m}$ (but also contains the orth coefficients)

Decay properties of the reduced matrix

The entries of $f\left(T_{m}\right)$ behave as predicted by the theory

Rational Krylov recurrence

$$
\mathcal{R} \mathcal{K}_{m}\left(A, \boldsymbol{v}, \sigma_{m-1}\right):=\operatorname{span}\left\{\boldsymbol{v},\left(A-\sigma_{1} I\right)^{-1} \boldsymbol{v}, \ldots, \prod_{j=1}^{m-1}\left(A-\sigma_{j} I\right)^{-1} \boldsymbol{v}\right\}
$$

the m th step of the rational Arnoldi algorithm produces the $N \times m$ matrix $V_{m}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right]$ whose orthonormal columns are a basis of the rational Krylov subspace $\mathcal{R} \mathcal{K}_{m}(A, \boldsymbol{v})$, and

$$
A V_{m} H_{m}=V_{m} K_{m}-h_{m+1, m}\left(A-\sigma_{m} I\right) \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T}
$$

with $H_{m}:=\left(h_{i, j}\right)_{i, j=1, \ldots, m}$ upper Hessenberg, and $K_{m}=I+H_{m} \operatorname{diag}\left(\sigma_{m}\right)$;
(Ruhe 1994, Güttel 2013, etc.)

Rational Krylov recurrence. Reduced matrix.

$$
J_{m}:=V_{m}^{*} A V_{m}=K_{m} H_{m}^{-1}-h_{m+1, m} V_{m}^{*}\left(A-\sigma_{m} I\right) \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T} H_{m}^{-1},
$$

The matrix J_{m} is not generally a Hessenberg matrix, except for some special choices of the shifts (Druskin -Knizhnerman 1998, Jagel - Reichel 2009, etc.)

This holds irrespective of the symmetry of A !

Structure of J_{m} is more complex (see also Fasino 2005, Van Buggenhout, Van Barel, Vandebril, 2018)

Sparsity pattern of the reduced matrix J_{m}

Consider the rational function

$$
s_{j}^{(t)}(x):=\frac{q_{j}(x)}{\left(x-\sigma_{t}\right) \cdots\left(x-\sigma_{t+j-1}\right)},
$$

with $t \geq 1$ and $q_{j}(x)$ a polynomial of degree at most j. If the indexes k, ℓ are such that $k \geq t+2$ and $\ell \leq t$, then

$$
\left(s_{j}^{(t)}\left(J_{m}\right)\right)_{k, \ell}=0, \quad j=1, \ldots, k-t-1
$$

Decay properties of the reduced matrix J_{m}

Hidden structure of J_{m} leads to decay properties

- The entries of J_{m} decay exponentially (depending on field of values of A)
- The entries of $f\left(J_{m}\right)$ also decay exponentially (depending on field of values of A)

$$
\left|f\left(J_{m}\right)_{k, \ell}\right| \leq 3 \frac{\tau}{\tau-1} \max _{|z|=\tau}|f(\psi(z))| \prod_{t=\ell}^{k-2} \frac{\tau+\left|\phi\left(\sigma_{t}\right)\right|}{\left|\phi\left(\sigma_{t}\right)\right| \tau+1}
$$

J_{50}

$\exp \left(J_{50}\right)$ Pozza - Simoncini, 2021

Rational Krylov iteration for A symmetric

The standard implementation of rational Krylov does not take advantage of symmetry

```
Deckers - Bultheel \((2007,2012)\) developed a three-term recurrence relation to generate a sequence of orthogonal rational functions to be used with \(\mathcal{R K}\)
```


Güttel (PhD thesis, 2010) proposed the corresponding (vector) recurrence:

Rational Krylov iteration for A symmetric

The standard implementation of rational Krylov does not take advantage of symmetry

Deckers - Bultheel $(2007,2012)$ developed a three-term recurrence relation to generate a sequence of orthogonal rational functions to be used with $\mathcal{R K}$

Güttel (PhD thesis, 2010) proposed the corresponding (vector) recurrence:

Rational Krylov iteration for A symmetric

The standard implementation of rational Krylov does not take advantage of symmetry

Deckers - Bultheel $(2007,2012)$ developed a three-term recurrence relation to generate a sequence of orthogonal rational functions to be used with $\mathcal{R K}$

Güttel (PhD thesis, 2010) proposed the corresponding (vector) recurrence:

$$
\beta_{j}\left(I-\xi_{j}^{-1} A\right) \boldsymbol{q}_{j+1}=A \boldsymbol{q}_{j}-\alpha_{j}\left(I-\xi_{j-1}^{-1} A\right) \boldsymbol{q}_{j}-\beta_{j-1}\left(I-\xi_{j-2}^{-1} A\right) \boldsymbol{q}_{j-1}
$$

Usual formulation and Arnoldi-type relation recovered by rearrangements of the terms
\Rightarrow Block version readily available

Q: Can this recurrence be useful? (It is somewhat more expensive, except for implicit orth.)

Rational Krylov iteration for A symmetric

The standard implementation of rational Krylov does not take advantage of symmetry

Deckers - Bultheel $(2007,2012)$ developed a three-term recurrence relation to generate a sequence of orthogonal rational functions to be used with $\mathcal{R K}$

Güttel (PhD thesis, 2010) proposed the corresponding (vector) recurrence:

$$
\beta_{j}\left(I-\xi_{j}^{-1} A\right) \boldsymbol{q}_{j+1}=A \boldsymbol{q}_{j}-\alpha_{j}\left(I-\xi_{j-1}^{-1} A\right) \boldsymbol{q}_{j}-\beta_{j-1}\left(I-\xi_{j-2}^{-1} A\right) \boldsymbol{q}_{j-1}
$$

Usual formulation and Arnoldi-type relation recovered by rearrangements of the terms
\Rightarrow Block version readily available...

Q: Can this recurrence be useful? (It is somewhat more expensive, except for implicit orth.)
A: Yes, whenever we can do without $Q_{m}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right]$

Rational Krylov iteration for A symmetric

The standard implementation of rational Krylov does not take advantage of symmetry

Deckers - Bultheel $(2007,2012)$ developed a three-term recurrence relation to generate a sequence of orthogonal rational functions to be used with $\mathcal{R K}$

Güttel (PhD thesis, 2010) proposed the corresponding (vector) recurrence:

$$
\beta_{j}\left(I-\xi_{j}^{-1} A\right) \boldsymbol{q}_{j+1}=A \boldsymbol{q}_{j}-\alpha_{j}\left(I-\xi_{j-1}^{-1} A\right) \boldsymbol{q}_{j}-\beta_{j-1}\left(I-\xi_{j-2}^{-1} A\right) \boldsymbol{q}_{j-1}
$$

Usual formulation and Arnoldi-type relation recovered by rearrangements of the terms
\Rightarrow Block version readily available...

Q: Can this recurrence be useful? (It is somewhat more expensive, except for implicit orth.)
A: Yes, whenever we can do without $Q_{m}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right]$

Applications

Instances where Q_{m}-less approach can be relevant:

- $e_{1}^{T} f\left(J_{m}\right) e_{1} \approx v^{T} f(A) v$
$\Rightarrow \operatorname{tr}(f(A)) \approx \frac{1}{\ell} \sum_{k=1}^{\ell} \tau_{k}$, where $\quad \tau_{k} \approx z_{k}^{*} f(A) z_{k}$ (Monte-Carlo approx)
- \mathcal{H}_{2}-norm approximation for dynamical system output control
$-\Rightarrow$ Approximation to control function

All examples explicitly use J_{m} but not Q_{m}

Q_{m}-less implementation

Computational issue. How to determine the (full) matrix

$$
J_{m}=Q_{m}^{*} A Q_{m}
$$

without having Q_{m} handy?
At the j-th iteration the last column (or row) of $J_{j}=Q_{j}^{\top} A Q_{j}$ is given by
where \widehat{y} satisfies

Q_{m}-less implementation

Computational issue. How to determine the (full) matrix

$$
J_{m}=Q_{m}^{*} A Q_{m}
$$

without having Q_{m} handy?
At the j-th iteration the last column (or row) of $J_{j}=Q_{j}^{T} A Q_{j}$ is given by

$$
J_{j} e_{j}=\widehat{y}_{j}-\frac{\beta_{j}^{2}}{\xi_{j}^{2}} \frac{\xi_{j}-\eta}{\omega_{j}} t_{j}
$$

where \widehat{y} satisfies

$$
\widehat{y}_{1}=\alpha_{1}, \quad \widehat{y}_{j}=\left[\begin{array}{c}
-\widehat{y}_{j-1} \frac{\beta_{j-1}}{\xi_{j-2} \omega_{j}} \\
\beta_{j-1} e_{j-1}^{T} y_{j}+\frac{\alpha_{j}}{\omega_{j}}
\end{array}\right]+\frac{\beta_{j-1}}{\omega_{j}} e_{j-1}, \quad \text { for } j>1
$$

Here $\left\{y_{j}\right\},\left\{t_{j}\right\}$ and $\left\{\omega_{j}\right\}$ are also updated by two-term recursive formulas (Palitta - Pozza - Simoncini, 2022)

Conclusions

* Rational krylov subspaces have rich structure yet to be fully exploited
* Short-term recurrence requires FPA work (Lanczos style)

Conclusions

* Rational krylov subspaces have rich structure yet to be fully exploited
* Short-term recurrence requires FPA work (Lanczos style)

For the time being... Happy Birthday Michele!

The Gatlinburg leaders - a replica

Conformal mappings associated with $W(A)$

