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Relaxed Krylov subspace approximation
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Recent computational and theoretical studies have shown that the matrix-vector product occurring at each step of a Krylov
subspace method can be relaxed as the iterations proceed, i.e., it can be computed in a less exact manner, without degradation
of the overall performance. In the present paper a general operator treatment of this phenomenon is provided and a new result
further explaining its behavior is presented.
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1 Introduction

We consider a linear finite n-dimensional operator v → A(v) and a (linear or nonlinear) problem

G(A, x) = 0 (1)

to be solved for the vector x ∈ Cn. Among the problems of interest of the form (1) are those related to the solution of large
linear systems, of eigenvalue problems, or to the evaluation of rational functions.

The operator A is not known exactly or it is too expensive to apply. A typical example is a Schur complement operator of
the form A = A = B − CT D−1E. Instead, it is possible to employ a relaxed version of A, i.e., an approximation Aε such
that Aε → A for ε → 0. Here ε is a parameter that the user may adjust. The computational cost associated with ε increases as
ε → 0. In the example of the Schur complement Aε can indicate, for example, the approximate solution of a system Dw = Ez
within a tolerance of ε.

We are interested in efficiently determining the solution x by projecting the problem onto the approximation space

Km = Km(Aε, v) = span{v, Aε1(v), Aε2(Aε1(v)), . . . , Aεm−1
(· · ·Aε2(Aε1(v)))}, v ∈ C

n,

where εk, k = 1, 2, . . . are in general different from each other, and we may consider large values of εk (see further comments
below). Note that Km ⊆ Km+1, and we assume that Km has full dimension m. Clearly, when εk = 0, k = 1, 2, . . . (the
non-relaxed or exact case) and A is represented by a matrix A, we have that K is the usual Krylov subspace Km(A, v) =
span{v, Av, A2v, . . . , Am−1v}; see, e.g., [2], [4], [11].

Let Vm = [v1, . . . , vm] be the matrix of the orthogonal basis of Km(Aε, v) obtained recursively one vector at the time
by an Arnoldi procedure, i.e., the ortogonalization of Aεk

vk with respect to the previous vectors. In the exact case, we have
v1 = v/‖v‖ and

AVm = Vm+1Hm+1,m, (2)

where Hm+1,m is the (m + 1) × m matrix of orthogonalization coefficients, and it is upper Hessenberg. In the general
approximated (or relaxed) case, we write the relaxed operator as Aεk

= A + Ek, then an orthogonal basis for the relaxed (or
inexact) approximation space K(Aε, v) can be obtained by the same process and this gives the relaxed (or inexact) recurrence

AVm = Vm+1Hm+1,m − [E1v1, E2v2, . . . , Emvm] =: Vm+1Hm+1,m + Fm,ε. (3)

Thus, we have that

Aεm
span{v, Aε1(v), Aε2(Aε1(v)), . . . , Aεm−1

(· · ·Aε2(Aε1(v)))} = Range(Vm+1Hm+1).

Note that neither Vm+1 nor Hm+1,m coincide with those of the exact operator in (2).
In the present paper we show that the perturbation induced by the approximate operator on the recurrence relation (3)

may be far less devastating than the magnitude of the perturbation would indicate. More precisely, the operator A may
be increasingly relaxed, that is εk may be allowed to increase with k, while the approximation process still converges to a
sufficiently accurate approximation of the solution x to the problem (1). We show that this is possible when the components
of the approximation in the basis Vm are decreasing in absolute value. We present a new result which helps us quantify this
decrease when using the (exact or inexact) FOM and GMRES methods.
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2 Approximation profile

Write the approximate solution to the problem (1) in Km(Aε, v) as xm = Vmym, for some ym ∈ Cm. Then, using (3), the
application of the exact operator A to xm can be formally written as

Axm = AVmym = Vm+1Hm+1,mym + Fm,εym.

where Vm+1Hm+1,mym corresponds to the application of the relaxed (or perturbed) operator, and Fm,εym is the “correction”.
It thus follows that if Fm,εym is small, e.g. in the Euclidean norm, then the application of the unperturbed operator is not
significantly affected, since

‖Axm − Vm+1Hm+1,mym‖ = ‖Fm,εym‖.

In other words, if ‖Fm,εym‖ is small, the product Axm is well represented by Vm+1Hm+1,mym. We explore here when
‖Fm,εym‖ is small. Note that here we are measuring the absolute error in the application of the operator; in the following we
implicitly assume that ‖Fm,εym‖ < ‖A‖, whereas our analysis shows that ‖Fm,ε‖ does not need to be always smaller than
‖A‖. In fact, the original operator may be significantly modified by means of a large ‖Fm,ε‖, while its action on the solution
vector is modified by the quantity ‖Fm,εym‖, which in practice may be much smaller.

Indeed, writing the matrix Fm,ε as Fm,ε = [fε1 , fε2 , . . . , fεm
], and letting ηk, k = 1, . . . , m be the components of ym, we

obtain

‖Fm,εym‖ = ‖
m∑

k=1

fεk
ηk‖ ≤

m∑

k=1

‖fεk
‖ |ηk|. (4)

Therefore, if for each k, the product ‖fεk
‖ |ηk| is small, then the error in the perturbed application is small. A small product

‖fεk
‖ |ηk| may be obtained because either of ‖fεk

‖ or |ηk| is small, and not necessarily both quantities.
In several applications, it was shown that the components of ym have a decreasing pattern, and this pattern can be related

to the residual norm of the problem; we cite some of these below. If we define the problem residual rk at iteration k as
rk = G(Aε, Vkyk), k = 1, . . . , m, then in these applications it can be shown that the jth component of ym, ηj = eT

j ym, after
m iterations satisfies

|ηj | ≤ γm ‖rk‖, for j > k, (5)

where γm does not depend on k. Assume that an estimate of γm is available, where m is the maximum allowed number of
iterations, and let ε be a small tolerance chosen by the user. Therefore, if at each iteration k the perturbation is required to
satisfy ‖fεk

‖ ≤ (mγm‖rk−1‖)
−1ε ≡ εk, where ‖rk−1‖ is the residual norm at the previous iteration, then from (4) we obtain

‖Fm,εym‖ ≤ ε. From a practical standpoint, this result shows that we can allow for increasing perturbations by a judicious
choice of εk, and still achieve a sufficiently accurate operator evaluation after m iterations.

The bound (5) shows that the components of the solution ym “keep memory” of the convergence history of the process, in
the sense that the components can be bounded by the residual norm at the corresponding (earlier) iteration. It is important to
realize that in general, all solution components may change at each iteration, i.e., eT

k ym will in general differ from eT
k ym−1.

Nonetheless, the process is able to store the convergence information as convergence takes place. Explicit bounds of the form
(5) have been shown to hold and used for the following problems of the form (1):

1. Solution of the algebraic linear system Ax = b, with A = A; see [8, 10, 1, 5];

2. Solution of the interior eigenvalue problem Ax = λx, with A = (A − σI)−1 for some chosen scalar σ [7];

3. Rational function evaluations, which are related to the evaluation of analytic functions such as exp(A)b; Here A =
(A − τI)−1 for specific choices of the scalar τ ; see [9, 3].

Here we investigate this phenomenon from an approximation viewpoint. Since Km = Range(Vm) ⊂ Range(Vm+1), it
may seem reasonable to think that if a good approximation is obtained in Range(Vm), then increasing the approximation space
by one dimension will provide additional information, whose magnitude should be of the order of the current error size. This
is typical of iterative refinement procedures. Indeed, in the case of linear systems with methods having decreasing residual
norms, the difference rm − rk for k ≤ m can be bounded as ‖rm − rk‖ = ‖A(Vmym − Vkyk)‖ ≤ ‖rm‖+ ‖rk‖ ≤ 2‖rk‖, so
that

‖Vmym − Vkyk‖ = ‖A−1A(Vmym − Vkyk)‖ ≤ 2‖A−1‖‖rk‖.

Therefore, the refinement in the solution after m − k additional iterations is bounded in terms of the kth residual. In the
following proposition we provide an equality between the solutions ym and yk. At each step the new approximation is
obtained by adding a correction term to the approximate solution of the previous step, whose magnitude is related to the error
(or residual) at the previous iteration; note that this fact is well known in case A is a self-adjoint operator and it is applied
exactly. We mention that our result is more general, in that the approximation at one step may be viewed as a correction of
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the approximate solution at any previous step. We show this property for the linear system case, with A = A for two Krylov
subspace methods for the solution of Ax = b with x0 = 0: FOM and and GMRES, i.e., using Galerkin and Petrov-Galerkin
conditions, respectively. To this end, we recall that in FOM, the solution ym is obtained as the solution to the linear system

Hmym = e1‖b‖, (6)

where Hm is the m × m matrix consisting of the first m rows of Hm+1,m, while the solution of GMRES is obtained as

ym = arg min
y∈Cm

‖e1‖b‖ − Hm+1,my‖; (7)

see, e.g., [2], [4], [11]. Note that the following result only depends on the problems (6) and (7) and therefore it holds for both
the exact and inexact operators.

Proposition 2.1 Let xk = Vkyk and xm = Vmym be the solutions after k and m iterations with k < m, respectively, of
either the FOM or GMRES methods. Let rk = b − AVkyk be the corresponding FOM or GMRES residual after k iterations.
Then

ym =

[
yk

0

]
+ dm, ‖dm‖ ≤ γm ‖rk‖,

where γm = ‖H−1
m ‖ in the case of FOM and γm = σmin(Hm+1,m)−1 in the case of GMRES.

P r o o f. We begin with the proof in the FOM case. Since one has that ‖rk‖ = hk+1,k|e
T
k yk| and Hk is a principal submatrix

of Hm, we have that

ym =

[
yk

0

]
− H−1

m

[
0
e1

]
‖rk‖,

which can be seen to hold by multiplying through by Hm. The result follows.
For the proof in the GMRES case, let Hm+1,m = Qm+1Rm+1,m be the QR factorization of the rectangular upper Hessen-

berg matrix Hm+1,m, where

Rm+1,m =

[
Rm

0

]
,

and the m × m matrix Rm is upper triangular. Therefore, ym = R−1
m [Im, 0]QT

m+1e1‖b‖, where QT
m+1 denotes the complex

conjugate of Qm+1. We can write QT
m+1 = Ωm+1Ωm · · ·Ω1, where for each i, the (m+1)× (m+1) matrix Ωi is the Givens

rotation applied to Hm+1,m to annihilate the element (i + 1, i) in Hm+1,m. The first k rotations Ω1, . . . , Ωk are also applied
to compute yk, so that

yk = R−1

k [Ik, 0]QT
k e1‖b‖ = R−1

k [Ik, 0]Ωk · . . . · Ω1e1‖b‖. (8)

Usually, one has the expression (8) with rotations Ω1, . . . , Ωk of order k + 1. Here we are justified in using rotations of order
m + 1 as long as the 0 in [Ik , 0] is the k × (m + 1− k) zero matrix. In addition, notice that ‖rk‖ = |eT

k+1Ωk · . . . ·Ω1e1|‖b‖.

Let Ω̂i = [0, Ik+1:m+1]Ωi[0; Ik+1:m+1], and since Rk is a principal submatrix of Rm, we write

Rm =

[
Rk R1,2

R2,2

]
.

Then,

ym = R−1
m [Im, 0]Ωm · . . . · Ωk+1Ωk · . . . · Ω1e1‖b‖

= R−1
m [Im, 0]Ωm · . . . · Ωk+1

[
Rk

I

][
R−1

k

I

]
Ωk · . . . · Ω1e1‖b‖

= R−1
m [Im, 0]Ωm · . . . · Ωk+1

[
Rk

I

][
yk

e1‖rk‖

]

= R−1
m

[
Rk

[I, 0]Ω̂m · . . . · Ω̂k+1

] [
yk

e1‖rk‖

]

=

[
Ik R−1

k R1,2

R2,2

]−1 [
yk

[I, 0] Ω̂m · . . . · Ω̂k+1e1‖rk‖

]
.
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Setting t = [I, 0]Ω̂m · . . . · Ω̂k+1e1‖rk‖, with ‖t‖ ≤ ‖rk‖, it follows that

ym =

[
yk − R−1

k R1,2R
−1

2,2t

R−1
2,2t

]

=

[
yk

0

]
+

[
I −R−1

k R1,2R
−1

2,2

R−1

2,2

][
0
t

]
=

[
yk

0

]
+

[
I R−1

k R1,2

R2,2

]−1 [
0
t

]

=

[
yk

0

]
+

[
Rk R1,2

R2,2

]−1 [
Rk

I

] [
0
t

]
=

[
yk

0

]
+ R−1

m

[
0
t

]
,

from which the result follows, recalling that ‖R−1
m ‖ = σmin(Hm+1,m)−1.

The result of Proposition 2.1 shows an explicit relation of each single component of the two vectors. In the case of GMRES,
from the proof we obtain [Ik , 0]ym = yk − R−1

k R1,2R
−1

2,2t, so that for j ≤ k,

eT
j ym = eT

j yk − eT
j R−1

k R1,2R
−1

2,2t. (9)

Since R−1

k is upper triangular, only the last k − j rows of R1,2 are involved in the computation of (9). Unless R−1
m has

large entries, the first k components of ym stabilize at their final value if ‖rk‖ is sufficiently small. Note that the result
of Proposition 2.1 gives a different proof of the result shown in [8, 10], while providing more insight into the way the
approximation is improved as the Krylov subspace dimension grows. For this reason, we believe the relation of Proposition 2.1
may give further insight in the understanding of truncation strategies in Krylov subspace methods. It is also worth noticing
that similar relations hold for the restarted versions of the methods above; see [6].

We remark that an update recurrence of the type shown in Proposition 2.1 has been given in [7] for approximate eigenvectors
of Ax = λx projected in the approximation subspace Km(Aε, v); cf. [7, Proposition 2.2].

A similar result can also be obtained when dealing with linear systems whose coefficient matrix is a polynomial in A with
distinct roots. In this case, by using the partial fraction expansion of the inverse of the polynomial, the solution can be recast
as the solution of single linear systems in A. More precisely, assume that Φk(A)x = b is the linear system to be solved, with
Φk(λ) =

∏k

j=1
(λ − λj). Using Φk(λ)−1 = τ0 +

∑k

j=1
τj(λ − λj)

−1, for some scalars τ0, . . . , τk, we can write

x = Φk(A)−1b = τ0b +

k∑

j=1

τj(A − λjI)−1b.

Therefore, an approximation xm = Vmym to x may be obtained by solving the k shifted systems in A in the same Krylov
subspace generated by A; cf. [3] and references therein. By applying the result of Proposition 2.1 to each linear system, a
decreasing pattern for ym can be readily obtained, where the components decrease according to the residual history of the
slowest converging system.
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