
Chapter 1

On the Superlinear Convergence of
MINRES⋆

Valeria Simoncini⋆⋆ and Daniel B. Szyld⋆⋆⋆

Abstract Quantitative bounds are presented for the superlinear convergence
of the MINRES method of Paige and Saunders [SIAM J. Numer. Anal.,
1975] for the solution of sparse linear systems Ax = b, with A symmetric
and indefinite. It is shown that the superlinear convergence is observed as
soon as the harmonic Ritz values approximate well the eigenvalues of A that
are either closest to zero or farthest from zero. This generalizes a well-known
corresponding result obtained by van der Sluis and van der Vorst with respect
to the Conjugate Gradients method, for A symmetric and positive definite.

1.1 Introduction

The MINRES method is a short-term recurrence Krylov subspace method
developed by Paige and Saunders [8] for the solution of large and sparse
linear systems of equations of the form

Ax = b, (1.1)

where the n × n matrix A is symmetric and indefinite. MINRES is in fact
very popular for solving indefinite linear systems, and it has become the
leading solver for symmetric saddle point linear systems, for which spectral
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information can often be obtained from the application problem; see, e.g., [2]
and references therein. It is well-known that MINRES exhibits superlinear
convergence, i.e., that the norm of the residuals decreases linearly at first, but
then, as the iterations progress the linear rate accelerates (cf. Figure 1.2). The
motivation of this paper is to explain this observed phenomenon. We show
that the superlinear convergence behavior (i.e., the change of the linear rate)
occurs when the harmonic Ritz values approximate well the eigenvalues of
the matrix A that are closest to or farthest away from the origin. This is
consistent with the exposition in [7, §7], and with the comments found in
[16, p. 78]. We are interested in describing a quantitative bound explaining
more precisely these observations.

After a brief description of the algorithm in Section 1.2, we collect different
results on the convergence of MINRES available in the literature (Section 1.3)
and, inspired by ideas from other contexts, we develop a quantitative bound
for its superlinear convergence (Section 1.4).

Throughout the paper exact arithmetic is assumed.

1.2 Review and preliminaries

We review here some concepts which we use throughout the paper. Given a
first approximation x0 to the solution of (1.1), and the corresponding initial
residual r0 = b−Ax0, the Krylov subspace of dimension m defined by A and
r0 is given by

Km = Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}. (1.2)

An orthonormal basis {v1, . . . , vm} of Km can be built by means of the Lanc-
zos method. Let Vm = [v1, . . . , vm] collect these vectors, and observe that
the matrix Tm = V T

mAVm is symmetric and tridiagonal; the latter property
is a consequence of the three-term recurrence from the Lanczos process. For
details, see, e.g., [4], [8], [9], [13].

Like many other projection type approaches, at the mth step an approxi-
mation to the solution of (1.1), xm, can be obtained in x0 + Km, by impos-
ing some additional condition. In MINRES, this approximation is found by
requiring that the norm of the corresponding residual rm = b−Axm is min-
imized over all possible vectors of the form xm = x0 + z, with z ∈ Km; here
and in the following we shall only consider the Euclidean norm, although the
use of other norms has been analyzed in the literature; see, e.g., [10]. Thus,
this approximation is of the form xm = x0+qm−1(A)r0, where qm−1 is a poly-
nomial of degree at most m−1. This implies that the residual rm = b−Axm

is associated with the so-called residual polynomial pm(t) of degree at most
m with pm(0) = 1, since rm = b− Axm = r0 − Aqm−1(A)r0 = pm(A)r0. We
recall two sets of scalars approximating the eigenvalues of the matrix A, as
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the iteration progresses: The Ritz values (with respect to Km), which are the
eigenvalues of Tm, and the harmonic Ritz values, which instead are the roots

of the residual polynomial pm(t), and are denoted by θ
(m)
1 , . . . , θ

(m)
m , i.e.,

pm(t) =
(θ

(m)
1 − t) · · · (θ(m)

m − t)

θ
(m)
1 · · · θ(m)

m

.

The harmonic Ritz values can be equivalently characterized as the Ritz val-
ues of A−1 with respect to AKm; see, e.g., [5]. From a computational view
point, the harmonic Ritz values can be obtained as the eigenvalues of the
pencil (Tm

TTm, Tm), where Tm = V T
m+1AVm; see [7] and references therein.

As a special feature, we also notice that harmonic Ritz values approximate
the eigenvalues from the interior of the spectral intervals of A. Therefore,
any interval around the origin that is free of eigenvalues of A is also free of
harmonic Ritz values [7]. This ensures that the approximation, say, to the
smallest positive eigenvalues is genuine, and it is not incidental, since no har-
monic Ritz value will cross the origin to approximate the negative eigenvalues
as m increases, the way Ritz values would do, on indefinite matrices. We also
mention that harmonic Ritz values may play an important role in practical
circumstances, such as the approximation of interior eigenvalues, see, e.g.,
[5], and for devising problem-dependent stopping criteria [11].

1.3 Known bounds for the residual norm

Let Λ(A) = {λ1, . . . , λn} be the set of eigenvalues of A, with the eigenvalues
ordered increasingly, and let Pm be the set of all polynomials p of degree at
most m such that p(0) = 1.

From rm = pm(A)r0, we have the following standard bound

‖rm‖ = ‖pm(A)r0‖ ≤ min
p∈Pm

max
i=1,...,n

|p(λi)| ‖r0‖. (1.3)

Therefore, it is useful to find appropriate bounds for

Em(Λ(A)) = min
p∈Pm

max
λ∈Λ(A)

|p(λ)|,

and these will depend of course on the form of the set of eigenvalues Λ(A).
One such bound was developed for the case where Λ(A) ⊂ [a, b]∪ [c, d], where
a < b < 0 < c < d, under the constraint that |b−a| = |d− c|, that is, the two
intervals have equal length. In this case, using an appropriate transformation
of the intervals and bounds on Chebychev polynomials, the following bound
holds:
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‖rm‖
‖r0‖

≤ 2

(

√

|ad| −
√

|bc|
√

|ad|+
√

|bc|

)[m/2]

,

where [m/2] is the integer part of m/2; see [3, Ch. 3], or [4, §3.1], for details.
Bounds for the asymptotic convergence factor limm→∞ e

1

m

m with em =
Em([a, b] ∪ [c, d]), were proposed in [18], where the role of

√

bc/ad was also
emphasized.

For the special case where the number of negative (or positive) eigenvalues
is relatively small, say k, we can use the technique in [14, Theo. 4.4] to provide
a more descriptive bound as follows.

Proposition 1. Let Λ(A) ⊂ {λ1, . . . , λk} ∪ [c, d], with λ1, . . . , λk negative,

and 0 < c ≤ d. Then, for m > k,

‖rm‖
‖r0‖

≤ Ωk
2

ρk−m + ρm−k
,

where ρ =

√
κ̃+ 1√
κ̃− 1

, κ̃ = d
c , and Ωk =

k
∏

j=1

(

1− d

λj

)

is independent of m.

Beckermann and Kuijlaars [1] developed bounds for the quantities Em(S)
for very specific sets S containing the spectrum of positive definite matri-
ces A. These bounds were useful to follow the superlinear convergence of
Conjugate Gradients (CG). For description of Conjugate Gradients, or other
Krylov subspace methods, see, e.g., [4], [9], [13]. Beckermann and Kuijlaars
further indicated that the general results they proved would be applicable to
MINRES as well, but for this one needs to build the appropriate sets S con-
taining Λ(A) now having negative and positive elements. Calculating these
sets “is a problem in itself,” and this was not developed in [1].

We note in passing that the a posteriori convergence bounds developed
in [12] can also apply to MINRES. They are based on how close invariant
subspaces of A are to the Krylov subspace; in the present context, this reduces
to the angle between eigenvectors and the Krylov subspace.

1.4 A new a-posteriori bound

As opposed to most a-priori estimates recalled in the previous section, here we
describe a new a-posteriori bound that aims to describe the possibly abrupt
steepness change in the linear convergence rate that is often encountered
when using MINRES. Detecting and understanding this behavior may help
devise an improved method, or an improved preconditioner, that allow the
method to immediately enter the superlinear convergence stage without the
initial slower phase; see, e.g., [6].
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We show that after a sufficient number of iterations have been performed,
the method behaves as if the eigencomponents corresponding to the smallest
eigenvalues (in modulo) had been removed. Since the (worst case) rate of
convergence depends on the spectral interval, the method behaves as if the
matrix had a reduced spectral interval, hence improving its convergence rate.
This phenomenon is well known for CG, and it was completely uncovered
by van der Sluis and van der Vorst in their 1986 paper [15]. We essentially
take their proof for CG, which uses Ritz values, and obtain a similar result
for MINRES using harmonic Ritz values. We use the same polynomial for
the bound, which is also used in [17, Lemma 1.5] for the nonsymmetric case.
We should also add that Van der Vorst in [16, p. 78] already mentions the
possibility of developing this bound in this form. Here we present it in detail.

Let (λk, zk), k = 1, . . . , n be the eigenpairs of A, with λk, k = 1, . . . , n
sorted in increasing absolute value, and assume that λ1 is simple.

Theorem 1. Let rm be the residual after m MINRES iterations with starting

residual r0, so that in particular rm = b − Axm with xm ∈ x0 + Km(A, r0).
Let us write rm = r̄0 + s(1), with r̄0 ⊥ z1, and let r̄j be the MINRES residual

after j iterations in Kj(A, r̄0). Then after m + j MINRES iterations with

starting residual r0 we obtain

‖rm+j‖ ≤ Fm‖r̄j‖, where Fm = max
k≥2

|θ(m)
1 |
|λ1|

|λ1 − λk|
|θ(m)

1 − λk|

and θ
(m)
1 is the harmonic Ritz value closest to λ1 in Km(A, r0).

Proof. Let pm, q̄j be the MINRES residual polynomials in Km(A, r0) and

Kj(A, r̄0), respectively. We write r0 =

n
∑

k=1

γkzk so that

rm = pm(A)r0 =

n
∑

k=1

pm(λk)γkzk, r̄0 =

n
∑

k=2

pm(λk)γkzk.

Moreover, r̄j = q̄j(A)r̄0 =

n
∑

k=2

q̄j(λk)pm(λk)γkzk. Let

φm(λ) =
θ
(m)
1

λ1

λ1 − λ

θ
(m)
1 − λ

pm(λ),

and notice that φm(λ1) = 0.
Since the MINRES polynomial is a minimizing polynomial, we obtain

‖rm+j‖2 = ‖pm+j(A)r0‖2 ≤ ‖φm(A)q̄j(A)r0‖2 =

n
∑

k=2

φm(λk)
2q̄j(λk)

2γ2
k

≤ F 2
m

n
∑

k=2

pm(λk)
2q̄j(λk)

2γ2
k = F 2

m‖r̄j‖2.
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The bound for ‖rm+j‖ shows that the residual norm can be bounded by
the norm of the residual deflated of the eigenvector component corresponding
to λ1. If one of the harmonic Ritz values is a good approximation to λ1, then
the factor Fm will be very close to one. Therefore, in this case the behavior
of the residual norm ‖rm+j‖ is well represented by that of r̄j , which has no
eigencomponent onto z1.

The result can be easily generalized to a group of eigenvalues, the only
technical change would be the use of more orthogonality conditions to de-
fine r̄0. Nowhere in the proof we used the fact that λ1 is the eigenvalue closest
to the origin. In fact, the proof holds for any simple eigenvalue of A, and in
particular for those farthest from the origin.
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Fig. 1.1 Example 1. Convergence history of MINRES on Ax = b and A1x1 = b1.
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Fig. 1.2 Example 1. Convergence history of the harmonic Ritz value closest to δ.
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Example 1. We consider the following data:

A =





A−

δ
A+



 , b = 1,

where δ = −10−3, and A+, A− are diagonal matrices with values logarithmi-
cally distributed in [100, 100.5] and [−101,−100], respectively. The dimension
of A is n = 2 · 399 + 1 = 799.

The convergence history of MINRES on Ax = b shows a long plateau,
with an almost complete stagnation (cf. Figure 1.1), corresponding to the
effort the method is making in approximating the interior eigenvalue δ, once
it discovers there is one. This fact can be clearly observed in Figure 1.2,

where the values mini |θ(m)
i −δ| are reported, where θ(m)

i i = 1, . . . ,m are the
harmonic Ritz values at the mth iteration.

Let r70 be the residual of MINRES on Ax = b after 70 iterations. The
dashed curve in Figure 1.1 reports the convergence history of a MINRES
process started with r70 as initial residual. Its convergence rate matches quite
well that of the original MINRES after the smallest eigenvalue is singled out.
For the sake of completeness, in Figure 1.1 we also report the convergence
history of MINRES applied to the companion problem A1x1 = b1 where the
row and column corresponding to δ are removed. The plot shows that the
convergence delay is only due to the isolated small eigenvalue.
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Fig. 1.3 Example 2. Convergence history of MINRES on Ax = b.

Example 2. We next consider a spectral distribution that is possibly more
common in practice, and in which the picture of superlinear convergence rate
is more typical. We consider a variant of the previous example, where now
δ = diag(−10−1,−3 · 10−1,−2 · 10−1), so that the matrix A has size n = 801;
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the right-hand side is b = 1, as in Example 1. The small negative eigenvalues
are now less isolated, and their approximation during the MINRES process
is more effective (cf. Figure 1.3). Nonetheless, as soon as the Krylov space
captures the small eigenvalues - after about 70 iterations - the MINRES
convergence rate changes, showing superlinear convergence.
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