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Outline of the 3-hour Presentation

e Schematic presentation of certain algebraic preconditioners
(Today)

e lterative solvers. Some (hopefully) helpful considerations...

(Tomorrow)

e Spectral analysis of nonsymmetric preconditioners
(Last Talk)




The problem

AN

Bt U f
B -C v g

Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
Elasticity problems

Mixed (FE) formulations of |l and IV order elliptic PDEs
Linearly Constrained Programs

Linear Regression in Statistics

Image restoration

... Survey: Benzi, Golub and Liesen, Acta Num 2005



The problem. Simplifications

A Bt U f
B -C v g

To make things simple:

*x A symmetric positive (semi)definite
x BT tall, possibly rank deficient
*x C' symmetric positive (semi)definite

* Warning: we shall use g = 0 in some cases



Spectral properties

Iy A BT 0< A\, <---< )\ eigsof A
B O 0<o, <---<o0; sing. valsof B
(M) subset of (Rusten & Winther 1992)

1 1 1
{i(xn — X2 +403), (- VA2 —1—4072,,1)] U {An, ~On+ /X2 +4a§)}



Spectral properties

M A BT 0< N\, <---< )\ eigsof A
B O 0<o, <---<o0; sing. valsof B
o(M) subset of (Rusten & Winther 1992)

1 1 1
[5(>\n — /A2 +407%), 5(>\1 — \/Af + 407%1)] U {An, 5(>\1 + 4/ A% —|—40'%)}

A nonsingular



Spectral properties

A BT 0=\, <---< )\ eigsof A
B O 0<o, <---<o0; sing. valsof B

(M) subset of

1 1 1
SO A 20— AT+ a03)] U e S0+ N 0]

ul Au
ul u

A singular but > ap >0, u € Ker(B)



Spectral properties

M- A BT 0< N\, <---< )\ eigsof A
B O 0<o, <---<0; sing. valsof B
o(M) subset of (Rusten & Winther 1992)

1 1 1
|:§()\n —\/AZ +40?), 50\1 — \/A% +40?n)} U |:>\n7 §(>\1 +1/A% + 40%)}

B full rank



Spectral properties

O< A, <---< )\ eigsof A

0=0, <---<o07 sing. vals of B

o(M) subset of

1 1 1
{5(—71 + An —\/(71 + An)2 + 40%) ,§(A1 — /AT + 49)}u[>m, §(A1 + /A% +4a%)]

B rank deficient, but 0 = A\, (BB! + C) full rank
Y1 = Amax(C)




Spectral properties

M A BT 0< A\, <---< )\ eigsof A
B O 0<o, <---<o0; sing. valsof B
o(M) subset of (Rusten & Winther 1992)

1 1 1
[§(>\n — /A2 +407?), §(>\1 — \/A% + 40%)] U |:)\n7 50\1 + 4/ A% +40%)}

Good (= slim) spectrum: A\ = \,,, 01 = o,
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Spectral properties

M A BT 0< A\, <---< )\ eigsof A
B O 0<o, <---<o0; sing. valsof B
o(M) subset of (Rusten & Winther 1992)

1 1 1
[5(/\” — /A2 +407), §(>\1 — \/A% + 40%)] U |:)\n7 50\1 + 1/ A% + 40%)}
Good (= slim) spectrum: \; = \,,, 01 = o,

e.g.

I Ut -
M = , UU" =1
U O
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General preconditioning strategy
e Find P such that
MPla=b 4=7Pu

is easier (faster) to solve than Mu = b

e A look at efficiency:
- Dealing with P should be cheap
- Storage requirements for P should be low
Possibly zero storage
- Properties (algebraic/functional) should be exploited
Mesh /parameter independence

Structure preserving preconditioners
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Block diagonal Preconditioner

* A nonsing., C = 0:

D A 0
"7l 0 BA-'BT
1 1 I A_%BT(BA—lBT)_%
= 7)0 QMPO 2 — 1 1
(BA=1BTY"2BA™2 0

_1 _1
MINRES converges in at most 3 iterations. (P, 2MP, 2) ={1,1/2 +5/2}
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Block diagonal Preconditioner

* A nonsing., C = 0:

A 0
0 BA BT

I A=2BT(BA-1BT) 2
(BA—'BT)"2BA"2 0

_1 _1
MINRES converges in at most 3 iterations. (P, 2MP, 2) ={1,1/2 +5/2}

A more practical choice:

A 0 ~ = 1T
~ spd. A~ A S~ BA "B

0o S

eigs in |[—a, —b] U [c, d], a,b,c,d >0

Still an Indefinite Problem




Giving up symmetry ...
e Change the preconditioner: Mimic the LU factors

I Ol |A BT A BT
M = =P =
BA-1 T O BA BT 4 (C

O BA1BT L (O
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Giving up symmetry ...
e Change the preconditioner: Mimic the LU factors

M — I Ol |A BT A BT
- |BA"Y 1| |0 BA-IBT +(C

O BA-BT 4+(C
e Change the preconditioner: Mimic the Structure

= P~

A BT
M = = M=~P
B -C
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Giving up symmetry ...
e Change the preconditioner: Mimic the LU factors

M — I Ol |A BT A BT
- |BA"Y 1| |0 BA-IBT +(C

O BA-BT 4+(C
e Change the preconditioner: Mimic the Structure

= P~

A Bt
M = =P~ M
B -C
. - | A B
e Change the matrix: Eliminate indef. M_ =
-B C
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Giving up symmetry ...
e Change the preconditioner: Mimaic the LU factors

I O |A BT A
M = = P =
BA=l 1| |0 BABT +C O

e Change the preconditioner: Mimzic the Structure
A BT

M = =P~ M

B -C

e Change the matrix: Eliminate indef. M_ =

e Change the matrix: Regularize (C = 0)

M:>Mfy[

A BT A+ 1pTw—-1p BT
B —AW B O




... But recovering symmetry in disguise

Nonstandard inner product:

Let W be any of MP~1 M_

For (W) in RT, find sym matrix H such that
WH = HWT

(that is, W is H-symmetric)
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... But recovering symmetry in disguise

Nonstandard inner product:

Let W be any of MP~1 M_

For (W) in RT, find sym matrix H such that

WH = HWT

(that is, W is H-symmetric)

If H is spd then

e )V is diagonalizable
e Use PCG on W with H-inner product



Aspd, P =

~ ~

Triangular preconditioner

A Bt
0 —-C

ldeal case: A=A, C=BA 'BT +C = Mp 1= [
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Triangular preconditioner

BT
—C

Aspd, P =

~ ~

ldeal case: A=A, C=BA 'BT +C = Mp 1=

Recovering symmetry?

e If C = C nonsing., then o(MP~1) in Rt

o If A< Athen o(MP~1) in Rt with

~

A€ [x1,x2] 31, x; = x;(BTAT'B+C)C~1, A7 A)




Constraint (Indefinite) Preconditioner

A BT AN —TI + I «
P = MP~ = ( )
B -C O I

with II = B(BA='BT 4+ C)~1BA-1

e If C nonsing = all eigs real and positive

o If BI'C =0 and BB + C > 0 = all eigs real and positive

Special case: C =0 = at most 2m unit eigs with Jordan blocks
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Constraint (Indefinite) Preconditioner. Generalizations

A BT

~

Primal-based: C' = C' nonsing, A~ A+ BTC'B

e lf A+ BTC'B> Aand C > C = all eigs real and positive
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Constraint (Indefinite) Preconditioner. Generalizations

A BT
P = _

~

Primal-based: C' = C' nonsing, A~ A+ BTC'B
e lf A+ BTC'B> Aand C > C = all eigs real and positive

~

Dual-based: (C=0) A~A, C=S5—BA BT for some S

elf A>Aand C <0 = all eigs real and positive

MP~1is H-symmetric with H = blkdiag(A — A, BA~1BT — §)
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The "minus-signed” Problem

A BT
-B C

B full rank = M_ positive stable = eigs in C*

_/\/l_:
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The "minus-signed” Problem

A BT
-B C

B full rank = M_ positive stable = eigs in C*

Important facts

e M _ has always at least n — m real eigs

o If 2||B|| < Anin(A) — Amax(C) = all eigs real and positive
for C = 0, condition simplifies: Apin(A) > 4A\max (BT A1 B)

o If B full rank and A\pin(A) > Anax(C)
apon scaling all eigs real and positive




The "minus-signed” Problem

A BT
-B C

B full rank = M_ positive stable = eigs in C*

Important facts

e M _ has always at least n — m real eigs

o If 2||B|| < Anin(A) — Amax(C) = all eigs real and positive
for C = 0, condition simplifies: Apin(A) > 4A\max (BT A1 B)

o If B full rank and A\pin(A) > Anax(C)
apon scaling all eigs real and positive

Hermitian-Skew-Hermitian preconditioners

Block diagonal preconditioner + nonsym solver




Regularized Problem
Augmented Lagrangian approach:
A+ BTW—'B BT

M. —
! B O

Particularly interesting for A indefinite or singular

* Any of the above preconditioners may be used.
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Regularized Problem

Augmented Lagrangian approach:

A+ %BTW_lB BT
B 0,

Particularly interesting for A indefinite or singular

* Any of the above preconditioners may be used.

A BT
B O

Somehow related preconditioner for M =

A+BT'w—-iB BT
0, |44




Questions (to be answered)

* Which formulation/preconditioner for which iterative solver?
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Questions (to be answered)

* Which formulation/preconditioner for which iterative solver?

* |Is the theoretical spectral information useful in practice?
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Questions (to be answered)

* Which formulation/preconditioner for which iterative solver?

* |Is the theoretical spectral information useful in practice?

* Are the imposed “constraints’ needed?
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