

Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part II: Iterative solvers

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it

Outline of the 3-hour Presentation

- Schematic presentation of certain algebraic preconditioners (Yesterday)
- Iterative solvers. Some (hopefully) helpful considerations...
 (Today)
- Spectral analysis of nonsymmetric preconditioners (Tomorrow)

The standard solvers

Krylov subspace iterative solvers for $\mathcal{M}x = b$:

- \mathcal{M} symmetric and positive definite \Rightarrow (P)CG
- \mathcal{M} symmetric indefinite \Rightarrow (P)MINRES, (P)SYMLQ
- \mathcal{M} nonsymmetric \Rightarrow (P)GMRES, (P)BiCGSTAB(ℓ)

The standard solvers

Krylov subspace iterative solvers for $\mathcal{M}x = b$:

- \mathcal{M} symmetric and positive definite \Rightarrow (P)CG
- \mathcal{M} symmetric indefinite \Rightarrow (P)MINRES, (P)SYMLQ
- \mathcal{M} nonsymmetric \Rightarrow (P)GMRES, (P)BiCGSTAB(ℓ)

More specific issues:

- * Convergence and clustering
- * Stagnation
- \star Symmetry wrto H-inner product (H spd)
- \star Symmetry wrto *J*-inner product (*J* not spd)

Convergence... CG

CG: minimum error method (in energy norm). For \mathcal{M} spd $(x_0 = 0)$

$$\min_{x \in K_k(\mathcal{M}, b)} \|x_{\star} - x\|_{\mathcal{M}} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x_{\star}\|_{\mathcal{M}}$$

with
$$\kappa = \lambda_{\max}(\mathcal{M})/\lambda_{\min}(\mathcal{M})$$

Convergence... CG

CG: minimum error method (in energy norm). For \mathcal{M} spd $(x_0 = 0)$

$$\min_{x \in K_k(\mathcal{M}, b)} \|x_{\star} - x\|_{\mathcal{M}} \leq 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x_{\star}\|_{\mathcal{M}}$$

with $\kappa = \lambda_{\max}(\mathcal{M})/\lambda_{\min}(\mathcal{M})$

Convergence...

GMRES: minimum residual method

$$\min_{x \in K_k(\mathcal{M}, b)} \|b - \mathcal{M}x\|, \qquad (x_0 = 0)$$

 x_k minimizer.

For
$$w \in K_k(\mathcal{M}, v)$$
, $w = q_{k-1}(\mathcal{M})b$. Then

$$\mathbf{r_k} = b - \mathcal{M}x_k = b - \mathcal{M}q_{k-1}(\mathcal{M})b = \mathbf{p_k}(\mathcal{M})b$$

Convergence...

GMRES: minimum residual method

$$\min_{x \in K_k(\mathcal{M}, b)} \|b - \mathcal{M}x\|, \qquad (x_0 = 0)$$

 x_k minimizer.

For $w \in K_k(\mathcal{M}, v)$, $w = q_{k-1}(\mathcal{M})b$. Then

$$r_k = b - \mathcal{M}x_k = b - \mathcal{M}q_{k-1}(\mathcal{M})b = p_k(\mathcal{M})b$$

Some "intuitive" consequences:

• \mathcal{M} (diag.ble) has few distinct eigs \Rightarrow fast convergence (minimal polynomial of \mathcal{M} wrto b has low degree)

Convergence...

GMRES: minimum residual method

$$\min_{x \in K_k(\mathcal{M}, b)} \|b - \mathcal{M}x\|, \qquad (x_0 = 0)$$

 x_k minimizer.

For $w \in K_k(\mathcal{M}, v)$, $w = q_{k-1}(\mathcal{M})b$. Then

$$r_{k} = b - \mathcal{M}x_{k} = b - \mathcal{M}q_{k-1}(\mathcal{M})b = p_{k}(\mathcal{M})b$$

Some "intuitive" consequences:

- \mathcal{M} (diag.ble) has few distinct eigs \Rightarrow fast convergence (minimal polynomial of \mathcal{M} wrto b has low degree)
- Spectral clustering is beneficial \Rightarrow select appropriate preconditioner

...and clustering

Will any spectral clustering do the job?

Residual: $r_k = p_k(\mathcal{M})b$ with $r_0 = b \implies p_k(0) = 1$

 \Rightarrow Spectrum away from zero

...and clustering

Will any spectral clustering do the job?

Residual: $r_k = p_k(\mathcal{M})b$ with $r_0 = b \implies p_k(0) = 1$

 \Rightarrow Spectrum away from zero

An example: $\sigma(\mathcal{M}) \subset [1-\rho, 1+\rho]$ $p_k(\lambda)$:

...and clustering

Will any spectral clustering do the job?

Residual: $r_k = p_k(\mathcal{M})b$ with $r_0 = b \implies p_k(0) = 1$

 \Rightarrow Spectrum away from zero

A second example: $\sigma(\mathcal{M}) \subset [2-\rho, 2+\rho]$ $p_k(\lambda)$:

...and a good clustering

A nonsym example: $\mathcal{M}=I+\rho Q$, Q unitary $(\sigma(\mathcal{M})\subset D(1,\rho))$

...and a good clustering

A nonsym example: $\mathcal{M} = I + \rho Q$, Q unitary $(\sigma(\mathcal{M}) \subset D(1, \rho))$

GMRES rate: ρ^k

For CG, rate: $\left(\frac{\rho}{1+\sqrt{1-\rho^2}}\right)^k$

...and a good clustering

A nonsym example: $\mathcal{M} = I + \rho Q$, Q unitary $(\sigma(\mathcal{M}) \subset D(1, \rho))$

GMRES rate: ρ^k

For CG, rate: $\left(\frac{\rho}{1+\sqrt{1-\rho^2}}\right)^k$

If $\sigma(\mathcal{M}) \subset D(2,\rho)$, GMRES has rate $\left(\frac{\rho}{2}\right)^k$

 $A \text{ is } 100 \times 100$

Conditions for non-Stagnation of GMRES

If
$$\alpha = \lambda_{\min}(\frac{1}{2}(\mathcal{M} + \mathcal{M}^T)) > 0$$
, then

$$||r_k|| \le \left(1 - \frac{\alpha^2}{\|\mathcal{M}\|^2}\right)^{\frac{k}{2}} ||b|| < ||b||$$

Note: \mathcal{M} must be positive real

Conditions for non-Stagnation of GMRES

If $\alpha = \lambda_{\min}(\frac{1}{2}(\mathcal{M} + \mathcal{M}^T)) > 0$, then

$$||r_k|| \le \left(1 - \frac{\alpha^2}{\|\mathcal{M}\|^2}\right)^{\frac{k}{2}} ||b|| < \|b\||$$

Note: \mathcal{M} must be positive real

New condition: Let $H = \frac{1}{2}(\mathcal{M} + \mathcal{M}^T)$, $S = \frac{1}{2}(\mathcal{M} - \mathcal{M}^T)$

If H is nonsingular and $\|SH^{-1}\| < 1$ then there exists (computable) c with 0 < c < 1 s.t.

$$||r_2|| \le c||b|| < ||b||$$

(same result for S nonsingular and $||HS^{-1}|| < 1$)

An additional result

With the same tools:

If
$$H^2+S^2$$
 nonsingular and $\|(HS+SH)(H^2+S^2)^{-1}\|<1$ (*) then there exists c with $0< c<1$ s.t.

$$||r_4|| \le c||b|| < ||b||$$

An additional result

With the same tools:

If $H^2 + S^2$ nonsingular and $\|(HS + SH)(H^2 + S^2)^{-1}\| < 1$ (*) then there exists c with 0 < c < 1 s.t.

$$||r_4|| \le c||b|| < ||b||$$

An example

$$\mathcal{M} = \begin{bmatrix} A & B^T \\ -B & 0 \end{bmatrix} \qquad \begin{array}{c} A \text{ symmetric} \\ B \text{ full rank} \end{array}$$

Note: $H = \frac{1}{2}(\mathcal{M} + \mathcal{M}^T)$ and $S = \frac{1}{2}(\mathcal{M} - \mathcal{M}^T)$ are singular

Assume $A = \mu I$. If μ s.t. (*) holds, then no full stagnation

Changing the inner product. Occurrence

- Minimize quantity in a different inner product
- Monitor convergence in agreement with the continuous problem
- Exploit "non-canonical" symmetries of the coeff. matrix

Symmetry wrto Euclidean inner product

$$\mathcal{M}x = b, \qquad \mathcal{M} \text{ spd}$$

Classical CG:
$$(u, v) = u^T v$$

Given x_0

$$r_0 = b - \mathcal{M}x_0$$
, $p_0 = r_0$

for
$$i = 0, 1, ...$$

$$\alpha_i = \frac{(r_i, r_i)}{(p_i, \mathcal{M}p_i)}$$

$$x_{i+1} = x_i + p_i \alpha_i$$

$$r_{i+1} = r_i - \mathcal{M}p_i\alpha_i$$

$$\beta_{i+1} = \frac{(r_{i+1}, \mathcal{M}p_i)}{(p_i, \mathcal{M}p_i)}$$

$$p_{i+1} = r_i + p_i \beta_{i+1}$$

Symmetry wrto H-inner product (H spd)

$$\mathcal{M}x = b$$

Assume there exists H spd such that $H\mathcal{M}$ is also spd

H-sym CG:
$$(u, v)_H = u^T H v$$

Given x_0

$$r_0 = b - \mathcal{M}x_0$$
, $p_0 = r_0$

for
$$i = 0, 1, ...$$

$$\alpha_i = \frac{(r_i, r_i)_{\mathbf{H}}}{(p_i, \mathcal{M}p_i)_{\mathbf{H}}}$$

$$x_{i+1} = x_i + p_i \alpha_i$$

$$r_{i+1} = r_i - \mathcal{M}p_i\alpha_i$$

$$\beta_{i+1} = \frac{(r_{i+1}, \mathcal{M}p_i)_{\mathbf{H}}}{(p_i, \mathcal{M}p_i)_{\mathbf{H}}}$$

$$p_{i+1} = r_i + p_i \beta_{i+1}$$

Application to Saddle-point systems. The "minus-signed" matrix

$$\mathcal{M}_{-} = \left[\begin{array}{cc} A & B^T \\ -B & O \end{array} \right]$$

 $\star \mathcal{M}_{-}$ is $\mathcal{H}(\gamma)$ -symmetric, with

$$\mathcal{H}(\gamma) = \begin{bmatrix} A - \gamma I & B^T \\ B & \gamma I \end{bmatrix}$$

- * Let $\gamma_{\star} = \frac{1}{2}\lambda_{\min}(A)$.

 If $\lambda_{\min}(A) > 4\lambda_{\max}(B^TA^{-1}B)$ then $\mathcal{H}(\gamma_{\star})$ is spd
- \star ...and $\mathcal{H}(\gamma_{\star})\mathcal{M}$ is also spd

An example. Stokes with mixed b.c. on the unit square

An example. Stokes with mixed b.c. on the unit square

Symmetry wrto an indefinite inner product

Given J symmetric nonsing, $\mathcal M$ is J-symmetric if

$$\mathcal{M}^T J = J \mathcal{M}$$

J-inner product: $(x,y)_J = x^T J y$

Example:

$$\mathcal{M}_{-} = \begin{bmatrix} A & B^T \\ -B & O \end{bmatrix}, \qquad J = \begin{bmatrix} I & O^T \\ O & -I \end{bmatrix},$$

Simplification of Lanczos-type procedure (e.g. QMR):

only one matrix-vector product (by \mathcal{M}) per iteration

Another example: Indefinite (Constraint) Preconditioner

$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & O \end{bmatrix}, \qquad \mathcal{P} = \begin{bmatrix} \widetilde{A} & B^T \\ B & O \end{bmatrix}$$

- $\star \mathcal{MP}^{-1}$ nonsym (nondiagonalizable!)
- $\star~\mathcal{MP}^{-1}$ is \mathcal{P}^{-1} -symmetric \Rightarrow Simplified Lanczos
- \star Applying \mathcal{P}^{-1} may be expensive... Inexact preconditioning
- \star Case $C \neq O$ more challenging \Rightarrow Class of preconditioners

Comparing $H(\gamma)$ -CG and Simplified Lanczos

ullet $H(\gamma)$ -CG involves reality condition

• $H(\gamma)$ -CG involves estimating γ

• $H(\gamma)$ -CG not clear how to precondition

• $H(\gamma)$ -CG convergence clear (exact arithm)