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Outline of the 3-hour Presentation

e Schematic presentation of certain algebraic preconditioners
(Yesterday)

e lterative solvers. Some (hopefully) helpful considerations...
(Today)

e Spectral analysis of nonsymmetric preconditioners
(Tomorrow)




The standard solvers

Krylov subspace iterative solvers for Mx = b :
e M symmetric and positive definite = (P)CG
e M symmetric indefinite = (P)MINRES, (P)SYMLQ

e M nonsymmetric = (P)GMRES, (P)BiCGSTAB(Y)



The standard solvers

Krylov subspace iterative solvers for Mx = b :
e M symmetric and positive definite = (P)CG
e M symmetric indefinite = (P)MINRES, (P)SYMLQ

e M nonsymmetric = (P)GMRES, (P)BiCGSTAB(Y)

More specific issues:

* Convergence and clustering

* Stagnation

* Symmetry wrto H-inner product (H spd)

* Symmetry wrto J-inner product (J not spd)



Convergence... CG
CG: minimum error method (in energy norm). For M spd (¢ = 0)
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Convergence...

GMRES: minimum residual method

min  ||b — Mz, (xo = 0)
re Ky, (M,b)

T minimizer.

For w € Kip(M,v), ,w = qp_1(M)b. Then

T = b — ./\/lCCk —=b— /\/lqk_1(/\/l)b = pk<./\/l)b
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e M (diag.ble) has few distinct eigs = fast convergence

(minimal polynomial of M wrto b has low degree)



Convergence...

GMRES: minimum residual method

min  ||b — Mz, (xg = 0)
re Ky, (M,b)

T minimizer.

For w € Kp(M,v), ,w = qr_1(M)b. Then

T = b — ./\/lCCk = b — /\/lqk_1(/\/l)b = pk<./\/l)b

Some “intuitive” consequences:

e M (diag.ble) has few distinct eigs = fast convergence

(minimal polynomial of M wrto b has low degree)

e Spectral clustering is beneficial = select appropriate preconditioner




...and clustering

Will any spectral clustering do the job 7
Residual: 7 =pr(M)bwithrg =b = pi(0) =1

= Spectrum away from zero
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...and clustering

Will any spectral clustering do the job 7
Residual: 7 = pg(M)bwithrg =b = pi(0) =1

= Spectrum away from zero

An example: (M) C |1 — p,1 + p] pr(A) :

1k
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...and clustering

Will any spectral clustering do the job 7
Residual: 7 = pg(M)bwithrg =b = pi(0) =1

= Spectrum away from zero

A second example: o(M) C [2 — p,2 + p] pr(A)

values of residual polynomial
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...and a good clustering

A nonsym example: M =1+ pQ@), @ unitary (o(M) C D(1,p))

13



...and a good clustering

A nonsym example: M =1+ pQ@, @ unitary (o(M) C D(1,p))
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...and a good clustering

A nonsym example: M =1+ pQ@, @ unitary (o(M) C D(1,p))

GMRES rate: pF
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Stagnation of GMRES
A is 100 x 100
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Conditions for non-Stagnation of GMRES
If & = Apin (53 (M + MT))> 0, then
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Note: M must be positive real

17



Conditions for non-Stagnation of GMRES
If & = Apin (53 (M + MT))> 0, then

k
042 2
Il < (1= g ) Ie1< 1

Note: M must be positive real

New condition: Let H = £(M + MT), S =1(M - MT)

If H is nonsingular and [|[SH 1| < 1 then there exists (computable) ¢
with 0 < ¢ < 1 s.t.
72| < cl[ol] < (1]

(same result for S nonsingular and ||HS™1|| < 1)
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An additional result

With the same tools:

If H? 4+ S? nonsingular and ||(HS + SH)(H? + S*)71|| < 1 (*)
then there exists ¢ with 0 < ¢ < 1 s.t.

Irall < cjoll< o]
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An additional result

With the same tools:

If H? 4 S? nonsingular and ||(HS + SH)(H?* + S*)71|| < 1 (*)
then there exists ¢ with 0 < ¢ < 1 s.t.

Irall < clfol|< o]

An example

A Bt A symmetric
—B 0 B full rank

Note: H = (M + M7T) and S = (M — MT) are singular

M:

Assume A = pl. If p s.t. (*) holds, then no full stagnation




Changing the inner product. Occurrence

e Minimize quantity in a different inner product
e Monitor convergence in agreement with the continuous problem

e Exploit “non-canonical” symmetries of the coeff. matrix
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Symmetry wrto Euclidean inner product

Max = b, M spd

Classical CG:  (u,v) = ulw

Given zg
ro = b— Muzg, po =10
fori=0,1,...

v — (r3,73)
o (pi,Mpi)

Tit1 = T + POy
Ti—i—l =T, — ./\/lpz'oci

5, _ (Ti+1,Mpz')
1 = T (p,, Mpy)

Pit1 = Ti + Difit+1
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Symmetry wrto H-inner product (H spd)
Mz =0

Assume there exists H spd such that HM is also spd

H-sym CG:  (u,v)g = ul Hu
Given xg

ro =b— Mazg, pg =10
fori=0,1,...

R ("“iﬂ“i)H
Qi = (pi,Mpi)n

Tit1 = T + Pioy;

TZ'+1 =T, — ./\/lpz-ozi

5. _ (rit1,Mpi)m
i+1 (ps,Mpi)H

Pit1 = Ti + Difit1
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Application to Saddle-point systems. The “minus-signed” matrix

A BT
M_ =
-B O
* M_ is H(7y)-symmetric, with
A—~I BT
H(v) =
B ~v1

* Let Ve = %)\min(A)-
If Ain(A) > 4Xpnax (BT A71B) then H(7v,) is spd

* ...and H(~v,)M is also spd
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An example. Stokes with mixed b.c. on the unit square

2—norm of residual
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An example. Stokes with mixed b.c. on the unit square

2—norm of residual
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Symmetry wrto an indefinite inner product

Given J symmetric nonsing, M is J-symmetric if

MYT =M

J-inner product: (z,y); =2l Jy

Example:

A BT I ot
—-B O O -1

M_ =

Simplification of Lanczos-type procedure (e.g. QMR):

only one matrix-vector product (by M) per iteration




Another example: Indefinite (Constraint) Preconditioner

A Bt A Bt
M: , 7):
B O B 0O

x MP~! nonsym (nondiagonalizable!)
x* MP~1is P~l-symmetric = Simplified Lanczos
x Applying P~! may be expensive... Inexact preconditioning

* Case C' # O more challenging = Class of preconditioners
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Comparing H(7)-CG and Simplified Lanczos

H (7)-CG involves reality condition

H (7)-CG involves estimating =y

H (~)-CG not clear how to precondition

H (7)-CG convergence clear (exact arithm)
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