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Large linear systems

Given a PDE and your preferred discretization strategy,

Ax = b, A ∈ Rn×n

▶ Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

x ≈ xm = Vmym

where Vm has orthonormal columns spanning Km(A, b) = span{b,Ab, . . . ,Am−1b}
▶ Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

where AP−1 is “easier” to solve with.

Comfort zone
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Heterogeneous variable setting

The differential problem may depend on space variable and

▶ Time (high quality soln of heat-, wave-type equations, dynamical systems generally)

▶ Parameters (e.g., coefficients with uncertainty, model tuning)

⇓

Approximation space in the discretization phase: tensor space

H× S

with ♣ H: spatial variables
♣ S: time/parameter variables

Algebraic system: A mixes all components, e.g.,

A = I ⊗ A+ GT ⊗ I
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Identity-preserving algebraic formulations

Ax = b, A = I ⊗ A+ GT ⊗ I A ∈ Rn×n, with n = nAnG

⇓

AX + XG = B, x = vec(X ), b = vec(B), X ∈ RnA×nG

Pros:

✓ Matrices of Smaller dimension ⇒ Reach more complex problems

✓ No mixing – Preserve properties of continuous problem

✓ Exploit algebraic structure (symmetries, rank properties...)
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Exploiting rank structure

Assume B can be well represented by a low rank matrix.

x ∈ RnAnG×1 → X ≈ X̃ =

X1

 [ XT
2 ]

with X1 ∈ RnA×k ,X2 ∈ RnG×k tall, k ≪ na, nG

Uncover low rank approximate representation!

▶ Save memory allocations while approximating!

▶ Different interpretation: approximate soln snapshots (MOR style)

▶ Recognize roles at the algebraic level: use different approximations for X1,X2
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Numerical solution of the Sylvester equation

AX + XGT = B

Various settings:

▶ Tiny A and G : Kron will do!

▶ Small A and G : Bartels-Stewart algorithm (Computes the Schur form of A and G )

▶ Large A and G : Iterative solution (B low rank)

▶ Projection methods

▶ ADI (Alternating Direction Iteration)

▶ Data sparse approaches (structure-dependent)
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Projection-type methods

Assume B = B1B
T
2 .

Given two low dimensional approx spaces KA, KG , and Vm,Wm their orthonormal bases
let Xm := VmYmW

T
m , Xm ≈ X

Galerkin condition: R := AXm + XmG
T − B1B

T
2 ⊥ KA ⊗KG

V⊤
m RWm = 0

Note: KA, KG tiny wrto K(A, b)

————————————

Projected Sylvester equation:

V⊤
m (AVmYmW

⊤
m + VmYmW

⊤
m G⊤ − B1B

⊤
2 )Wm = 0

(V⊤
m AVm)Ym + Ym(V

⊤
m G⊤Vm) − V⊤

m B1B
⊤
2 Wm = 0

Early contributions: Saad ’90, Jaimoukha & Kasenally ’94, for

range(Vm) = KA = Range([B1,AB1, . . . ,Am−1B1])
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More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

(Druskin & Knizhnerman ’98, Simoncini ’07)

• Rational Krylov subspace

KA = KA := Range([B1, (A− s1I )
−1B1, . . . ,

m−1∏
j=1

(A− sj I )
−1B1])

usually, {s1, . . . , sm−1} ⊂ C+ chosen either a-priori or dynamically
(form matrix equations, Druskin & Simoncini ’11)

In both cases, for Range(Vm) = KA, Range(Wm) = KGT projected Lyapunov equation:

(V⊤
m AVm)Ym + Ym(W

⊤
m G⊤Wm)− V⊤

m B1B
⊤
2 Wm = 0 Xm = VmYmW

⊤
m
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A first example. Space-time discretization

ut = L(u), L(u) = −∆u + 10xux + 10yuy , (x , y , z) ∈ (0, 1)3 u(∗, t0) = 0, f = 1

Crank-Nicolson type discretization in time, Finite Differences in space

⇒ One-sided approximation, only in space (no dim reduction in time)

CPU time

nA nG Crank-Nic RKSM (dim)
15625 400 5.1 1.1 (20)
125000 400 75.7 18.5 (25)
287496 400 314.5 63.8 (28)

AX + XGT = B1B
T
2 , X ≈ X1X

T
2 = VmY = VmY1Y

T
2
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Pros and Cons of Rational Krylov spaces

Pros

▶ Captures minimal rank on the fly

▶ Generally very efficient on large sparse problems

▶ Parameter-free in practice

Cons

▶ Increasingly more expensive on denser problems (3D)

▶ Orthogonalization of long vectors
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Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large
variety of settings

A (1± ε) ℓ2-subspace embedding for the tall matrix V ∈ Rn×k is a matrix S such that, for
all x ∈ Rk ,

(1− ε)∥Vx∥22 ≤ ∥SVx∥22 ≤ (1 + ε)∥Vx∥22

To build a “feasible” S :

▶ S needs to have small number of rows, r

▶ The products SV should be cheap

▶ Probabilistic confidence on the quality of S

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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The Subsampled Randomized Hadamard Transform

⇒ If S is an r × n matrix of i.i.d. N(0, 1/r) with r = O(k/ε2) then S is (1± ε)
embedding

⇒ If S taken from fast Johnson-Lindenstrauss transforms, then SV only costs O(nk)
(Tamás Sarlós)

A convenient choice giving a fast Johnson-Lindenstrauss transform:

Sv :=
1√
rn
PCDv , S is an r × n matrix

(Randemacher operator)
with
D “rotation” (diagonal matrix from uniform distr. in (−1, 1))
C fast cosine transform
P coordinate sampling

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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Sketching meets Krylov

How can we use subspace embedding in our context to get Xm = VmYmW
T
m ?

▶ Compute a “cheap” space range(Vm)

▶ Avoid orth and storing Vm

▶ Vm ⇒ SVm

▶ Orthogonalize shorter vectors in SVm

(similarly for Wm)

Technical details:

♣ Local orthogonality in Vm,Wm (“truncated basis”)

♣ Two-pass strategy to recover Xm = (VmYm)W
T
m

Currently NLA ‘hot topic’. In the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner,

Nakatsukasa, Nouy, Schweitzer, Timsit, Tropp, etc.
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The sketched problem

Instead of imposing Galerkin condition V T
m RmWm = 0 and solve

(V⊤
m AVm)Ym + Ym(W

⊤
m G⊤Wm) = V⊤

m B1B
⊤
2 Wm Xm = VmYmW

⊤
m

We impose the “sketched” Galerkin condition QT
mSVRmSWPm = 0 and solve

(Q⊤
mSAVm)YmT

T
W + TVYm(W

⊤
m G⊤Pm) = Q⊤

mSVB1B
⊤
2 ST

WPm

where SVVm = QmTV , SWWm = PmTW are QR factorizations

Work in progress with Davide Palitta, Marcel Schweitzer
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The same problem seen earlier

ut − L(u) = f , L(u) = −∆u + 10xux + 10yuy , (x , y , z) ∈ (0, 1)3

u(∗, t0) = 0, f = 1

Crank-Nicolson type discretization in time, Finite differences in space

⇒ One-sided approximation, only in space (no dim reduction in time)

Truncation: 5, Sketched space dim: 1000 (= 2mmax)

CPU time

nA nG Crank-Nic RKSM (dim) Sketched Krylov (dim)
15625 400 5.08 1.15 (20) 1.04 (180)
125000 400 75.71 18.50 (25) 10.72 (260)
287496 400 314.54 63.82 (28) 39.53 (360)

AX + XGT = B1B
T
2 , X ≈ X1X

T
2
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All-at-once heat equation

ut +∆u = f u(0) = 0

Variational formulation

find u ∈ U : b(u, v) = ⟨f , v⟩ for all v ∈ V

where U := H1
(0)

(I;X ′) ∩ L2(I,X ), X := H1
0 (Ω), V := L2(I;X )

b(u, v) :=
∫ τττ
0

∫
Ω ut(t, x) v(t, x) dx dt +

∫ τττ
0 a(u(t), v(t)) dt

⟨f , v⟩ :=
∫ τττ
0

∫
Ω f (t, x) v(t, x) dx dt.

Discretization: Petrov-Galerkin method with trial and test spaces Uδ ⊂ U, Vδ ⊂ V

find uδ ∈ Uδ : b(uδ, vδ) = ⟨f , vδ⟩ for all vδ ∈ Vδ

with Uδ := S∆t ⊗ Xh, Vδ = Q∆t ⊗ Xh where
S∆t : piecewise linear FE on I
Q∆t : piecewise constant FE on I
Xh : any conformal space, e.g., p.w. linear FE

♣ Well-posedness (discrete inf-sup cond) depends on the choice of Uδ,Vδ

Remark: This discretization coincides with Crank–Nicolson scheme if trapezoidal
approximation of the rhs temporal integration is used
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The final linear system

B⊤
δ uδ = fδ

where

[Bδ](k,i),(ℓ,j) = (σ̇k , τ ℓ)L2(I) (ϕi , ϕj)L2(Ω) + (σk , τ ℓ)L2(I) a(ϕi , ϕj),

[fδ](ℓ,j) = (f , τ ℓ ⊗ ϕj)L2(I;H)

that is, Bδ = D∆t ⊗Mh + C∆t ⊗ Kh

Remark: We approximate fδ to achieve full tensor-product structure

Resulting generalized Sylvester equation:

KhUδC∆t +MhUδD∆t = F δ, with F δ = [g1, . . . , gP ][h1, . . . , hP ]
⊤

Fδ matrix of low rank ⇒ Uδ approx by low rank matrix Ũδ

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2021)
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Sketching strategies. Preliminary runs. 1

M−1
h KhUδ +UδD∆tC

−1
∆t = M−1

h F δC
−1
∆t

(M−1
h Kh not formed explicitly) corresponds to

AX + XGT = B1B
T
2 , X ≈ X1X

T
2

We solve by only reducing the space variable (One-sided algebraic approx)

Truncation: 5, Sketched space dim: 1000 (= 2mmax)

CPU time (secs)

nA nG Crank-Nic RKSM (dim) Sketched Krylov (dim)
9472 1000 8.4 4.3 (17) 3.1 (180)
13085 1000 10.8 6.40 (17) 4.7 (200)
19126 1000 14.5 11.7 (18) 6.3 (220)
29430 1000 20.8 19.4 (17) 10.1 (240)
46545 1000 35.1 52.9 (20) 21.5 (320)
82270 1000 53.3 149.9 (21) 42.2 (360)

163195 1000 165.6 356.2 (20) 104.5 (460)
393968 1000 504.9 1634.2 (21) 388.5 (620)

(approximate solution rank: 17-20)
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Sketching strategies. Preliminary runs. 2

Truncation: 5, Sketched space dim: 1000 (= 2mmax)

CPU time (secs), mass matrix lumping in space

nA nG Crank-Nic RKSM (dim) Sketched Krylov (dim)
9472 1000 8.3 1.5 (15) 0.9 (120)
13085 1000 14.1 1.7 (15) 1.6 (120)
19126 1000 18.9 2.2 (16) 1.6 (140)
29430 1000 29.1 2.7 (16) 2.1 (160)
46545 1000 43.9 4.1 (16) 3.4 (180)
82270 1000 83.2 8.5 (19) 7.1 (220)

163195 1000 225.2 18.9 (19) 17.8 (260)
393968 1000 807.8 53.8 (16) 60.2 (360)

(approximate solution rank: 17-20)
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Conclusions

Sketching:

▶ Very promising strategy for big data

▶ Easily applicable in matrix computations contexts

▶ Analysis of theoretical impacts is ongoing in various communities

▶ In our context: pushes dimension limits ahead

Visit: www.dm.unibo.it/˜simoncin
Email address: valeria.simoncini@unibo.it
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