

Sketching meets Krylov in space-time

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

From joint works with Julian Henning, Davide Palitta, Marcel Schweitzer, Karsten Urban

Large linear systems

Given a PDE and your preferred discretization strategy,

$$\mathcal{A}x = b, \quad \mathcal{A} \in \mathbb{R}^{n \times n}$$

Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

$$x \approx x_m = \mathcal{V}_m y_m$$

where V_m has orthonormal columns spanning K_m(A, b) = span{b, Ab, ..., A^{m−1}b}
 Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

where AP^{-1} is "easier" to solve with.

Comfort zone

Large linear systems

Given a PDE and your preferred discretization strategy,

$$\mathcal{A}x = b, \quad \mathcal{A} \in \mathbb{R}^{n \times n}$$

Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

$$x \approx x_m = \mathcal{V}_m y_m$$

where \mathcal{V}_m has orthonormal columns spanning $\mathbb{K}_m(\mathcal{A}, b) = \operatorname{span}\{b, \mathcal{A}b, \dots, \mathcal{A}^{m-1}b\}$ \blacktriangleright Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

where AP^{-1} is "easier" to solve with.

Comfort zone

Large linear systems

Given a PDE and your preferred discretization strategy,

$$\mathcal{A}x = b, \quad \mathcal{A} \in \mathbb{R}^{n \times n}$$

Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

$$x \approx x_m = \mathcal{V}_m y_m$$

where \mathcal{V}_m has orthonormal columns spanning $\mathbb{K}_m(\mathcal{A}, b) = \operatorname{span}\{b, \mathcal{A}b, \dots, \mathcal{A}^{m-1}b\}$ \blacktriangleright Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

where AP^{-1} is "easier" to solve with.

Comfort zone

Heterogeneous variable setting

The differential problem may depend on space variable and

- Time (high quality soln of heat-, wave-type equations, dynamical systems generally)
- Parameters (e.g., coefficients with uncertainty, model tuning)

Approximation space in the discretization phase: tensor space

 $\mathcal{H} imes \mathcal{S}$

with \$ \$\mathcal{H}\$: spatial variables \$ \$\mathcal{S}\$: time/parameter variables

Algebraic system: \mathcal{A} mixes all components, e.g.,

 $\mathcal{A} = I \otimes A + G^T \otimes I$

Heterogeneous variable setting

The differential problem may depend on space variable and

- Time (high quality soln of heat-, wave-type equations, dynamical systems generally)
- Parameters (e.g., coefficients with uncertainty, model tuning)

\Downarrow

Approximation space in the discretization phase: tensor space

 $\mathcal{H}\times \mathcal{S}$

with & H: spatial variables & S: time/parameter variables

Algebraic system: A mixes all components, e.g.,

 $\mathcal{A} = I \otimes \mathcal{A} + \mathcal{G}^{\mathsf{T}} \otimes I$

Heterogeneous variable setting

The differential problem may depend on space variable and

- ▶ Time (high quality soln of heat-, wave-type equations, dynamical systems generally)
- Parameters (e.g., coefficients with uncertainty, model tuning)

\Downarrow

Approximation space in the discretization phase: tensor space

 $\mathcal{H}\times \mathcal{S}$

with & H: spatial variables & S: time/parameter variables

Algebraic system: A mixes all components, e.g.,

$$\mathcal{A} = \mathcal{I} \otimes \mathcal{A} + \mathcal{G}^{\mathsf{T}} \otimes \mathcal{I}$$

Identity-preserving algebraic formulations

$$\mathcal{A}x = b, \qquad \mathcal{A} = I \otimes A + G^T \otimes I \qquad \mathcal{A} \in \mathbb{R}^{n \times n}, \text{ with } n = n_A n_G$$

$$\downarrow$$

$$AX + XG = B, \qquad x = \operatorname{vec}(X), \qquad b = \operatorname{vec}(B), \quad X \in \mathbb{R}^{n_A \times n_G}$$

Pros:

- ✓ Matrices of Smaller dimension \Rightarrow Reach more complex problems
- ✓ No mixing Preserve properties of continuous problem
- Exploit algebraic structure (symmetries, rank properties...)

Identity-preserving algebraic formulations

$$\mathcal{A}x = b, \qquad \mathcal{A} = I \otimes A + G^T \otimes I \qquad \mathcal{A} \in \mathbb{R}^{n \times n}, \text{ with } n = n_A n_G$$

$$\Downarrow$$

$$AX + XG = B, \qquad x = \operatorname{vec}(X), \qquad b = \operatorname{vec}(B), \quad X \in \mathbb{R}^{n_A \times n_G}$$

Pros:

- ✓ Matrices of Smaller dimension \Rightarrow Reach more complex problems
- ✓ No mixing Preserve properties of continuous problem
- Exploit algebraic structure (symmetries, rank properties...)

Identity-preserving algebraic formulations

$$\mathcal{A}x = b, \qquad \mathcal{A} = I \otimes A + G^T \otimes I \qquad \mathcal{A} \in \mathbb{R}^{n \times n}, \text{ with } n = n_A n_G$$

$$\Downarrow$$

$$AX + XG = B, \qquad x = \operatorname{vec}(X), \qquad b = \operatorname{vec}(B), \quad X \in \mathbb{R}^{n_A \times n_G}$$

Pros:

- ✓ Matrices of Smaller dimension \Rightarrow Reach more complex problems
- ✓ No mixing Preserve properties of continuous problem
- ✓ Exploit algebraic structure (symmetries, rank properties...)

Exploiting rank structure

Assume B can be well represented by a low rank matrix.

$$x \in \mathbb{R}^{n_A n_G \times 1} \quad \rightarrow \quad X \approx \widetilde{X} = \begin{bmatrix} X_1 \end{bmatrix} \begin{bmatrix} X_2^T \end{bmatrix}$$

with $X_1 \in \mathbb{R}^{n_A imes k}, X_2 \in \mathbb{R}^{n_G imes k}$ tall, $k \ll n_a, n_G$

Uncover low rank approximate representation!

- Save memory allocations while approximating!
- Different interpretation: approximate soln snapshots (MOR style)
- ▶ Recognize roles at the algebraic level: use different approximations for X_1, X_2

Assume B can be well represented by a low rank matrix.

$$x \in \mathbb{R}^{n_A n_G imes 1} ext{ } o ext{ } X pprox \widetilde{X} = \left[X_1
ight] \left[ext{ } X_2^{ op}
ight]$$

with $X_1 \in \mathbb{R}^{n_A \times k}, X_2 \in \mathbb{R}^{n_G \times k}$ tall, $k \ll n_a, n_G$

Uncover low rank approximate representation!

- Save memory allocations while approximating!
- Different interpretation: approximate soln snapshots (MOR style)
- Recognize roles at the algebraic level: use different approximations for X₁, X₂

Numerical solution of the Sylvester equation

$$AX + XG^T = B$$

Various settings:

- Tiny A and G: Kron will do!
- Small A and G: Bartels-Stewart algorithm (Computes the Schur form of A and G)

Large A and G: Iterative solution (B low rank)

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of the Sylvester equation

$$AX + XG^T = B$$

Various settings:

- Tiny A and G: Kron will do!
- ▶ <u>Small A and G</u>: Bartels-Stewart algorithm (Computes the Schur form of A and G)

Large A and G: Iterative solution (B low rank)

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of the Sylvester equation

$$AX + XG^T = B$$

Various settings:

- Tiny A and G: Kron will do!
- Small A and G: Bartels-Stewart algorithm (Computes the Schur form of A and G)
- Large A and G: Iterative solution (B low rank)
 - Projection methods
 - ADI (Alternating Direction Iteration)
 - Data sparse approaches (structure-dependent)

Projection-type methods

Assume $B = B_1 B_2^T$. Given two low dimensional approx spaces \mathcal{K}_A , \mathcal{K}_G , and V_m , W_m their orthonormal bases let $X_m := V_m Y_m W_m^T$, $X_m \approx X$

Galerkin condition: $R := AX_m + X_m G^T - B_1 B_2^T \perp \mathcal{K}_A \otimes \mathcal{K}_G$ $V_m^\top R W_m = 0$

Note: \mathcal{K}_A , \mathcal{K}_G tiny wrto $\mathbb{K}(\mathcal{A}, b)$

Projected Sylvester equation:

$$V_m^{\top}(AV_mY_mW_m^{\top} + V_mY_mW_m^{\top}G^{\top} - B_1B_2^{\top})W_m = 0$$

($V_m^{\top}AV_m$) $Y_m + Y_m(V_m^{\top}G^{\top}V_m) - V_m^{\top}B_1B_2^{\top}W_m = 0$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for range(V_m) = \mathcal{K}_A = Range([$B_1, AB_1, \dots, A^{m-1}B_1$])

Projection-type methods

Assume $B = B_1 B_2^T$. Given two low dimensional approx spaces \mathcal{K}_A , \mathcal{K}_G , and V_m , W_m their orthonormal bases let $X_m := V_m Y_m W_m^T$, $X_m \approx X$

Galerkin condition: $R := AX_m + X_m G^T - B_1 B_2^T \perp \mathcal{K}_A \otimes \mathcal{K}_G$ $V_m^\top R W_m = 0$

Note: \mathcal{K}_A , \mathcal{K}_G tiny wrto $\mathbb{K}(\mathcal{A}, b)$

Projected Sylvester equation:

$$V_m^{\top} (AV_m Y_m W_m^{\top} + V_m Y_m W_m^{\top} G^{\top} - B_1 B_2^{\top}) W_m = 0$$

$$(V_m^{\top} AV_m) Y_m + Y_m (V_m^{\top} G^{\top} V_m) - V_m^{\top} B_1 B_2^{\top} W_m = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for range(V_m) = \mathcal{K}_A = Range($[B_1, AB_1, \dots, A^{m-1}B_1]$)

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

(Druskin & Knizhnerman '98, Simoncini '07)

• Rational Krylov subspace

$$\mathcal{K}_{A} = \mathbb{K}_{A} := \operatorname{Range}([B_{1}, (A - s_{1}I)^{-1}B_{1}, \dots, \prod_{j=1}^{m-1}(A - s_{j}I)^{-1}B_{1}])$$

usually, $\{s_1, \ldots, s_{m-1}\} \subset \mathbb{C}^+$ chosen either a-priori or dynamically (form matrix equations, Druskin & Simoncini '11)

In both cases, for $\text{Range}(V_m) = \mathcal{K}_A$, $\text{Range}(W_m) = \mathcal{K}_{G^T}$ projected Lyapunov equation:

 $(V_m^{\top}AV_m)Y_m + Y_m(W_m^{\top}G^{\top}W_m) - V_m^{\top}B_1B_2^{\top}W_m = 0 \qquad X_m = V_mY_mW_m^{\top}$

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

(Druskin & Knizhnerman '98, Simoncini '07)

• Rational Krylov subspace

$$\mathcal{K}_{A} = \mathbb{K}_{A} := \operatorname{Range}([B_{1}, (A - s_{1}I)^{-1}B_{1}, \dots, \prod_{j=1}^{m-1}(A - s_{j}I)^{-1}B_{1}])$$

usually, $\{s_1, \ldots, s_{m-1}\} \subset \mathbb{C}^+$ chosen either a-priori or dynamically (form matrix equations, Druskin & Simoncini '11)

In both cases, for Range(V_m) = \mathcal{K}_A , Range(W_m) = $\mathcal{K}_{G^{\top}}$ projected Lyapunov equation: $(V_m^{\top}AV_m)Y_m + Y_m(W_m^{\top}G^{\top}W_m) - V_m^{\top}B_1B_2^{\top}W_m = 0$ $X_m = V_mY_mW_m^{\top}$

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

(Druskin & Knizhnerman '98, Simoncini '07)

• Rational Krylov subspace

$$\mathcal{K}_{A} = \mathbb{K}_{A} := \operatorname{Range}([B_{1}, (A - s_{1}I)^{-1}B_{1}, \dots, \prod_{j=1}^{m-1}(A - s_{j}I)^{-1}B_{1}])$$

usually, $\{s_1, \ldots, s_{m-1}\} \subset \mathbb{C}^+$ chosen either a-priori or dynamically (form matrix equations, Druskin & Simoncini '11)

In both cases, for Range(V_m) = \mathcal{K}_A , Range(W_m) = \mathcal{K}_{G^T} projected Lyapunov equation:

 $(V_m^{\top}AV_m)Y_m + Y_m(W_m^{\top}G^{\top}W_m) - V_m^{\top}B_1B_2^{\top}W_m = 0 \qquad X_m = V_mY_mW_m^{\top}$

A first example. Space-time discretization

 $u_t = \mathcal{L}(u),$ $\mathcal{L}(u) = -\Delta u + 10xu_x + 10yu_y,$ $(x, y, z) \in (0, 1)^3$ $u(*, t_0) = 0, f = 1$

Crank-Nicolson type discretization in time, Finite Differences in space

 \Rightarrow One-sided approximation, only in space (no dim reduction in time)

CPU time

n _A	n _G	Crank-Nic	RKSM (dim)
15625	400	5.1	1.1 (20)
125000	400	75.7	18.5 (25)
287496	400	314.5	63.8 (28)

 $AX + XG^{T} = B_1B_2^{T}, \qquad X \approx X_1X_2^{T} = V_mY = V_mY_1Y_2^{T}$

Pros and Cons of Rational Krylov spaces

Pros

- Captures minimal rank on the fly
- Generally very efficient on large sparse problems
- Parameter-free in practice

Cons

- Increasingly more expensive on denser problems (3D)
- Orthogonalization of long vectors

Pros and Cons of Rational Krylov spaces

Pros

- Captures minimal rank on the fly
- Generally very efficient on large sparse problems
- Parameter-free in practice

Cons

- Increasingly more expensive on denser problems (3D)
- Orthogonalization of long vectors

Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large variety of settings

A $(1 \pm \varepsilon) \ell_2$ -subspace embedding for the tall matrix $V \in \mathbb{R}^{n \times k}$ is a matrix S such that, for all $x \in \mathbb{R}^k$,

 $(1-\varepsilon) \|Vx\|_2^2 \le \|SVx\|_2^2 \le (1+\varepsilon) \|Vx\|_2^2$

To build a "feasible" S :

- S needs to have small number of rows, r
- The products SV should be cheap
- Probabilistic confidence on the quality of S

Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large variety of settings

A $(1 \pm \varepsilon) \ell_2$ -subspace embedding for the tall matrix $V \in \mathbb{R}^{n \times k}$ is a matrix S such that, for all $x \in \mathbb{R}^k$,

$$(1 - \varepsilon) \|Vx\|_2^2 \le \|SVx\|_2^2 \le (1 + \varepsilon) \|Vx\|_2^2$$

To build a "feasible" S :

- S needs to have small number of rows, r
- ► The products *SV* should be cheap
- Probabilistic confidence on the quality of S

Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large variety of settings

A $(1 \pm \varepsilon) \ell_2$ -subspace embedding for the tall matrix $V \in \mathbb{R}^{n \times k}$ is a matrix S such that, for all $x \in \mathbb{R}^k$,

$$(1 - \varepsilon) \|Vx\|_2^2 \le \|SVx\|_2^2 \le (1 + \varepsilon) \|Vx\|_2^2$$

To build a "feasible" S :

- S needs to have small number of rows, r
- The products SV should be cheap
- Probabilistic confidence on the quality of S

The Subsampled Randomized Hadamard Transform

- ⇒ If S is an $r \times n$ matrix of i.i.d. N(0, 1/r) with $r = O(k/\varepsilon^2)$ then S is $(1 \pm \varepsilon)$ embedding
- \Rightarrow If S taken from fast Johnson-Lindenstrauss transforms, then SV only costs O(nk) (Tamás Sarlós)

A convenient choice giving a fast Johnson-Lindenstrauss transform:

$$Sv := \frac{1}{\sqrt{rn}} PCDv,$$
 S is an $r \times n$ matrix

(Randemacher operator)

with

- D "rotation" (diagonal matrix from uniform distr. in (-1,1))
- C fast cosine transform
- P coordinate sampling

The Subsampled Randomized Hadamard Transform

- ⇒ If S is an $r \times n$ matrix of i.i.d. N(0, 1/r) with $r = O(k/\varepsilon^2)$ then S is $(1 \pm \varepsilon)$ embedding
- \Rightarrow If S taken from fast Johnson-Lindenstrauss transforms, then SV only costs O(nk) (Tamás Sarlós)

A convenient choice giving a fast Johnson-Lindenstrauss transform:

$$Sv := \frac{1}{\sqrt{rn}} PCDv,$$
 S is an $r \times n$ matrix

(Randemacher operator)

with

- D "rotation" (diagonal matrix from uniform distr. in (-1, 1))
- C fast cosine transform
- **P** coordinate sampling

Sketching meets Krylov

How can we use subspace embedding in our context to get $X_m = V_m Y_m W_m^T$?

- ► Compute a "cheap" space range(V_m)
- Avoid orth and storing V_m
- $\blacktriangleright V_m \Rightarrow SV_m$
- Orthogonalize shorter vectors in SV_m

(similarly for W_m)

Technical details:

- \clubsuit Local orthogonality in V_m , W_m ("truncated basis")
- **4** Two-pass strategy to recover $X_m = (V_m Y_m) W_m^T$

Currently NLA 'hot topic'. In the "Krylov world", Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa, Nouy, Schweitzer, Timsit, Tropp, etc.

Sketching meets Krylov

How can we use subspace embedding in our context to get $X_m = V_m Y_m W_m^T$?

- ► Compute a "cheap" space range(V_m)
- Avoid orth and storing V_m
- $\blacktriangleright V_m \Rightarrow SV_m$
- Orthogonalize shorter vectors in SV_m

(similarly for W_m)

Technical details:

- \clubsuit Local orthogonality in V_m , W_m ("truncated basis")
- **♣** Two-pass strategy to recover $X_m = (V_m Y_m) W_m^T$

Currently NLA 'hot topic'. In the "Krylov world", Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa, Nouy, Schweitzer, Timsit, Tropp, etc.

The sketched problem

Instead of imposing Galerkin condition $V_m^T R_m W_m = 0$ and solve

$$(V_m^{\top}AV_m)Y_m + Y_m(W_m^{\top}G^{\top}W_m) = V_m^{\top}B_1B_2^{\top}W_m \qquad X_m = V_mY_mW_m^{\top}$$

We impose the "sketched" Galerkin condition $Q_m^T S_V R_m S_W P_m = 0$ and solve

$$(Q_m^{\top} SAV_m) Y_m T_W^{T} + T_V Y_m (W_m^{\top} G^{\top} P_m) = Q_m^{\top} S_V B_1 B_2^{\top} S_W^{T} P_m$$

where $S_V V_m = Q_m T_V$, $S_W W_m = P_m T_W$ are QR factorizations

Work in progress with Davide Palitta, Marcel Schweitzer

The same problem seen earlier

 $u_t - \mathcal{L}(u) = f,$ $\mathcal{L}(u) = -\Delta u + 10xu_x + 10yu_y,$ $(x, y, z) \in (0, 1)^3$ $u(*, t_0) = 0, f = 1$

Crank-Nicolson type discretization in time, Finite differences in space

 \Rightarrow One-sided approximation, only in space (no dim reduction in time)

Truncation: 5, Sketched space dim: 1000 (= $2m_{max}$)

CPU time

	n _A	n _G	Crank-Nic	RKSM (dim)	Sketched Krylov (dim)
	15625	400	5.08	1.15 (20)	1.04 (180)
	125000	400	75.71	18.50 (25)	10.72 (260)
	287496	400	314.54	63.82 (28)	39.53 (360)
1					

 $AX + XG^{\mathsf{T}} = B_1 B_2^{\mathsf{T}}, \qquad X \approx X_1 X_2^{\mathsf{T}}$

All-at-once heat equation

$$u_t + \Delta u = f$$
 $u(0) = 0$

Variational formulation

$$\begin{aligned} & \text{find } u \in U: \quad b(u,v) = \langle f,v \rangle \quad \text{for all } v \in V \\ \text{where} \quad & U := H^1_{(0)}(\mathcal{I};X') \cap L_2(\mathcal{I},X), \; X := H^1_0(\Omega), \; V := L_2(\mathcal{I};X) \\ & b(u,v) := \int_0^\tau \int_\Omega u_t(t,x) \, v(t,x) \, dx \, dt + \int_0^\tau a(u(t),v(t)) \, dt \\ & \langle f,v \rangle := \int_0^\tau \int_\Omega f(t,x) \, v(t,x) \, dx \, dt. \end{aligned}$$

Discretization: Petrov-Galerkin method with trial and test spaces $U_{\delta} \subset U$, $V_{\delta} \subset V$

find
$$u_{\delta} \in U_{\delta}$$
: $b(u_{\delta}, v_{\delta}) = \langle f, v_{\delta} \rangle$ for all $v_{\delta} \in V_{\delta}$

with $U_{\delta} := S_{\Delta t} \otimes X_h$, $V_{\delta} = Q_{\Delta t} \otimes X_h$ where

 $S_{\Delta t}$: piecewise linear FE on \mathcal{I} $Q_{\Delta t}$: piecewise constant FE on \mathcal{I} X_{b} : any conformal space e.g. p.w. linea

 \clubsuit Well-posedness (discrete inf-sup cond) depends on the choice of U_{δ}, V_{δ}

Remark: This discretization coincides with Crank–Nicolson scheme if trapezoidal approximation of the rhs temporal integration is used

All-at-once heat equation

$$u_t + \Delta u = f$$
 $u(0) = 0$

Variational formulation

$$\begin{aligned} & \text{find } u \in U: \quad b(u,v) = \langle f,v \rangle \quad \text{for all } v \in V \\ \text{where} \quad & U := H^1_{(0)}(\mathcal{I};X') \cap L_2(\mathcal{I},X), \; X := H^1_0(\Omega), \; V := L_2(\mathcal{I};X) \\ & b(u,v) := \int_0^\tau \int_\Omega u_t(t,x) \, v(t,x) \, dx \, dt + \int_0^\tau a(u(t),v(t)) \, dt \\ & \langle f,v \rangle := \int_0^\tau \int_\Omega f(t,x) \, v(t,x) \, dx \, dt. \end{aligned}$$

Discretization: Petrov-Galerkin method with trial and test spaces $U_{\delta} \subset U$, $V_{\delta} \subset V$

find
$$u_{\delta} \in U_{\delta}$$
: $b(u_{\delta}, v_{\delta}) = \langle f, v_{\delta} \rangle$ for all $v_{\delta} \in V_{\delta}$

with $U_{\delta} := S_{\Delta t} \otimes X_h$, $V_{\delta} = Q_{\Delta t} \otimes X_h$ where

 $S_{\Delta t}$: piecewise linear FE on \mathcal{I} $Q_{\Delta t}$: piecewise constant FE on \mathcal{I} X_h : any conformal space, e.g., p.w. linear FE

 \clubsuit Well-posedness (discrete inf-sup cond) depends on the choice of U_{δ}, V_{δ}

Remark: This discretization coincides with Crank–Nicolson scheme if trapezoidal approximation of the rhs temporal integration is used

The final linear system

$$B_{\delta}^{\top}u_{\delta}=f_{\delta}$$

where

$$[B_{\delta}]_{(k,i),(\ell,j)} = (\dot{\sigma}^{k}, \tau^{\ell})_{L_{2}(\mathcal{I})} (\phi_{i}, \phi_{j})_{L_{2}(\Omega)} + (\sigma^{k}, \tau^{\ell})_{L_{2}(\mathcal{I})} a(\phi_{i}, \phi_{j}),$$

$$[f_{\delta}]_{(\ell,j)} = (f, \tau^{\ell} \otimes \phi_{j})_{L_{2}(\mathcal{I};H)}$$

that is, $B_{\delta} = D_{\Delta t} \otimes M_h + C_{\Delta t} \otimes K_h$

Remark: We approximate f_{δ} to achieve full tensor-product structure

Resulting generalized Sylvester equation:

 $K_h \mathbf{U}_{\delta} C_{\Delta t} + M_h \mathbf{U}_{\delta} D_{\Delta t} = F_{\delta}, \quad \text{with} \quad F_{\delta} = [g_1, \dots, g_P] [h_1, \dots, h_P]^{\top}$

 F_{δ} matrix of low rank \Rightarrow \mathbf{U}_{δ} approx by low rank matrix $\widetilde{\mathbf{U}}_{\delta}$

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2021)

Sketching strategies. Preliminary runs. 1

$$M_h^{-1}K_h \mathbf{U}_{\delta} + \mathbf{U}_{\delta} D_{\Delta t} C_{\Delta t}^{-1} = M_h^{-1} F_{\delta} C_{\Delta t}^{-1}$$

 $(M_h^{-1}K_h \text{ not formed explicitly})$ corresponds to

$$AX + XG^{\mathsf{T}} = B_1 B_2^{\mathsf{T}}, \qquad X \approx X_1 X_2^{\mathsf{T}}$$

We solve by only reducing the space variable (One-sided algebraic approx)

Truncation: 5, Sketched space dim: 1000 (= $2m_{max}$)

CPU time (secs)

n _A	n _G	Crank-Nic	RKSM (dim)	Sketched Krylov (dim)
9472	1000	8.4	4.3 (17)	3.1 (180)
13085	1000	10.8	6.40 (17)	4.7 (200)
19126	1000	14.5	11.7 (18)	6.3 (220)
29430	1000	20.8	19.4 (17)	10.1 (240)
46545	1000	35.1	52.9 (20)	21.5 (320)
82270	1000	53.3	149.9 (21)	42.2 (360)
163195	1000	165.6	356.2 (20)	104.5 (460)
393968	1000	504.9	1634.2 (21)	388.5 (620)

(approximate solution rank: 17-20)

Sketching strategies. Preliminary runs. 2

Truncation: 5, Sketched space dim: $1000 (= 2m_{max})$

CPU time (secs), mass matrix lumping in space

n _A	n _G	Crank-Nic	RKSM (dim)	Sketched Krylov (dim)
9472	1000	8.3	1.5 (15)	0.9 (120)
13085	1000	14.1	1.7 (15)	1.6 (120)
19126	1000	18.9	2.2 (16)	1.6 (140)
29430	1000	29.1	2.7 (16)	2.1 (160)
46545	1000	43.9	4.1 (16)	3.4 (180)
82270	1000	83.2	8.5 (19)	7.1 (220)
163195	1000	225.2	18.9 (19)	17.8 (260)
393968	1000	807.8	53.8 (16)	60.2 (360)

(approximate solution rank: 17-20)

Conclusions

Sketching:

- Very promising strategy for big data
- Easily applicable in matrix computations contexts
- Analysis of theoretical impacts is ongoing in various communities

In our context: pushes dimension limits ahead

Visit: www.dm.unibo.it/~simoncin Email address: valeria.simoncini@unibo.it

Conclusions

Sketching:

- Very promising strategy for big data
- Easily applicable in matrix computations contexts
- Analysis of theoretical impacts is ongoing in various communities
- In our context: pushes dimension limits ahead

Visit: www.dm.unibo.it/~simoncin Email address: valeria.simoncini@unibo.it

Conclusions

Sketching:

- Very promising strategy for big data
- Easily applicable in matrix computations contexts
- Analysis of theoretical impacts is ongoing in various communities
- In our context: pushes dimension limits ahead

Visit: www.dm.unibo.it/~simoncin Email address: valeria.simoncini@unibo.it