Università di Bologna

Sketching meets Krylov in space-time

Valeria Simoncini

Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it

From joint works with Julian Henning, Davide Palitta, Marcel Schweitzer, Karsten Urban

Large linear systems

Given a PDE and your preferred discretization strategy,

$$
\mathcal{A} x=b, \quad \mathcal{A} \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

$$
x \approx x_{m}=\mathcal{V}_{m} y_{m}
$$

where \mathcal{V}_{m} has orthonormal columns spanning $\mathbb{K}_{m}(\mathcal{A}, b)=\operatorname{span}\left\{b, \mathcal{A} b, \ldots, \mathcal{A}^{m-1} b\right\}$

- Preconditioners: find P such that
where $A P^{-1}$ is "easier" to solve with

Large linear systems

Given a PDE and your preferred discretization strategy,

$$
\mathcal{A} x=b, \quad \mathcal{A} \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

$$
x \approx x_{m}=\mathcal{V}_{m} y_{m}
$$

where \mathcal{V}_{m} has orthonormal columns spanning $\mathbb{K}_{m}(\mathcal{A}, b)=\operatorname{span}\left\{b, \mathcal{A} b, \ldots, \mathcal{A}^{m-1} b\right\}$

- Preconditioners: find P such that
where $A P^{-1}$ is "easier" to solve with.
Comfort zone

Large linear systems

Given a PDE and your preferred discretization strategy,

$$
\mathcal{A} x=b, \quad \mathcal{A} \in \mathbb{R}^{n \times n}
$$

- Krylov subspace methods (CG, minRes, GMRES, BiCGSTAB, etc.)

$$
x \approx x_{m}=\mathcal{V}_{m} y_{m}
$$

where \mathcal{V}_{m} has orthonormal columns spanning $\mathbb{K}_{m}(\mathcal{A}, b)=\operatorname{span}\left\{b, \mathcal{A} b, \ldots, \mathcal{A}^{m-1} b\right\}$

- Preconditioners: find P such that

$$
A P^{-1} \tilde{x}=b \quad x=P^{-1} \tilde{x}
$$

where $A P^{-1}$ is "easier" to solve with.
Comfort zone

Heterogeneous variable setting

The differential problem may depend on space variable and

- Time (high quality soln of heat-, wave-type equations, dynamical systems generally)
- Parameters (e.g., coefficients with uncertainty, model tuning)

Approximation space in the discretization phase: tensor space
with $\& \mathcal{H}$: spatial variables
\& S: time/parameter variables
Algebraic system: \mathcal{A} mixes all components, e.g.

Heterogeneous variable setting

The differential problem may depend on space variable and

- Time (high quality soln of heat-, wave-type equations, dynamical systems generally)
- Parameters (e.g., coefficients with uncertainty, model tuning)

```
\Downarrow
```

Approximation space in the discretization phase: tensor space

$$
\mathcal{H} \times \mathcal{S}
$$

with \& \mathcal{H} : spatial variables
\& \mathcal{S} : time/parameter variables
Algebraic system: \mathcal{A} mixes all components, e.g.

Heterogeneous variable setting

The differential problem may depend on space variable and

- Time (high quality soln of heat-, wave-type equations, dynamical systems generally)
- Parameters (e.g., coefficients with uncertainty, model tuning)

\Downarrow

Approximation space in the discretization phase: tensor space

$$
\mathcal{H} \times \mathcal{S}
$$

with \& \mathcal{H} : spatial variables
\& \mathcal{S} : time/parameter variables
Algebraic system: \mathcal{A} mixes all components, e.g.,

$$
\mathcal{A}=I \otimes A+G^{T} \otimes I
$$

Identity-preserving algebraic formulations

$$
\begin{array}{r}
\mathcal{A} x=b, \quad \mathcal{A}=I \otimes A+G^{T} \otimes I \quad \mathcal{A} \in \mathbb{R}^{n \times n}, \text { with } n=n_{A} n_{G} \\
\Downarrow \\
A X+X G=B, \quad x=\operatorname{vec}(X), \quad b=\operatorname{vec}(B), \quad X \in \mathbb{R}^{n_{A} \times n_{G}}
\end{array}
$$

Matrices of Smaller dimension \Rightarrow Reach more complex problems

No mixing - Preserve properties of continuous problem

Exploit algebraic structure (symmetries, rank properties...)

Identity-preserving algebraic formulations

$$
\begin{array}{r}
\mathcal{A} x=b, \quad \mathcal{A}=I \otimes A+G^{T} \otimes I \quad \mathcal{A} \in \mathbb{R}^{n \times n}, \text { with } n=n_{A} n_{G} \\
\Downarrow \\
A X+X G=B, \quad x=\operatorname{vec}(X), \quad b=\operatorname{vec}(B), \quad X \in \mathbb{R}^{n_{A} \times n_{G}}
\end{array}
$$

Pros:
\checkmark Matrices of Smaller dimension \Rightarrow Reach more complex problems
\checkmark No mixing - Preserve properties of continuous problem
\checkmark Exploit algebraic structure (symmetries, rank properties...)

Identity-preserving algebraic formulations

$$
\begin{aligned}
& \mathcal{A} x=b, \mathcal{A}=I \otimes A+G^{T} \otimes I \\
& \mathcal{A} \in \mathbb{R}^{n \times n}, \text { with } n=n_{A} n_{G} \\
& \Downarrow \\
& A X+X G=B, \quad x=\operatorname{vec}(X), \quad b=\operatorname{vec}(B), \quad X \in \mathbb{R}^{n_{A} \times n_{G}}
\end{aligned}
$$

Pros:
\checkmark Matrices of Smaller dimension \Rightarrow Reach more complex problems
\checkmark No mixing - Preserve properties of continuous problem
\checkmark Exploit algebraic structure (symmetries, rank properties...)

Exploiting rank structure

Assume B can be well represented by a low rank matrix.

$$
x \in \mathbb{R}^{n_{A} n_{G} \times 1} \quad \rightarrow \quad X \approx \widetilde{X}=\left[X_{1}\right]\left[X_{2}^{T}\right]
$$

with $X_{1} \in \mathbb{R}^{n_{A} \times k}, X_{2} \in \mathbb{R}^{n_{G} \times k}$ tall, $k \ll n_{a}, n_{G}$

Uncover low rank approximate representation!

- Save memory allocations while approximating!
- Different interpretation: approximate soln snapshots (MOR style)
\rightarrow Recognize roles at the algebraic level: use different approximations for X_{1}, X_{2}

Exploiting rank structure

Assume B can be well represented by a low rank matrix.

$$
x \in \mathbb{R}^{n_{A} n_{G} \times 1} \quad \rightarrow \quad X \approx \widetilde{X}=\left[X_{1}\right]\left[X_{2}^{T}\right]
$$

with $X_{1} \in \mathbb{R}^{n_{A} \times k}, X_{2} \in \mathbb{R}^{n_{G} \times k}$ tall, $k \ll n_{a}, n_{G}$

Uncover low rank approximate representation!

- Save memory allocations while approximating!
- Different interpretation: approximate soln snapshots (MOR style)
- Recognize roles at the algebraic level: use different approximations for X_{1}, X_{2}

Numerical solution of the Sylvester equation

$$
A X+X G^{T}=B
$$

Various settings:

- Tiny A and G : Kron will do!
- Small A and G: Bartels-Stewart algorithm (Computes the Schur form of A and G)
- Large A and G : Iterative solution (B low rank)

P Projection methods

* ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of the Sylvester equation

$$
A X+X G^{T}=B
$$

Various settings:

- Tiny A and G : Kron will do!
- Small A and G: Bartels-Stewart algorithm (Computes the Schur form of A and G)

- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Numerical solution of the Sylvester equation

$$
A X+X G^{T}=B
$$

Various settings:

- Tiny A and G : Kron will do!
- Small A and G: Bartels-Stewart algorithm (Computes the Schur form of A and G)
- Large A and G : Iterative solution (B low rank)
- Projection methods
- ADI (Alternating Direction Iteration)
- Data sparse approaches (structure-dependent)

Projection-type methods

Assume $B=B_{1} B_{2}^{T}$.
Given two low dimensional approx spaces $\mathcal{K}_{A}, \mathcal{K}_{G}$, and V_{m}, W_{m} their orthonormal bases let $X_{m}:=V_{m} Y_{m} W_{m}^{\top}, X_{m} \approx X$

Galerkin condition: $R:=A X_{m}+X_{m} G^{T}-B_{1} B_{2}^{T} \quad \perp \quad \mathcal{K}_{A} \otimes \mathcal{K}_{G}$

$$
V_{m}^{\top} R W_{m}=0
$$

Projected Sylvester equation:

Projection-type methods

Assume $B=B_{1} B_{2}^{T}$.
Given two low dimensional approx spaces $\mathcal{K}_{A}, \mathcal{K}_{G}$, and V_{m}, W_{m} their orthonormal bases let $X_{m}:=V_{m} Y_{m} W_{m}^{T}, X_{m} \approx X$

Galerkin condition: $R:=A X_{m}+X_{m} G^{T}-B_{1} B_{2}^{T} \quad \perp \quad \mathcal{K}_{A} \otimes \mathcal{K}_{G}$

$$
V_{m}^{\top} R W_{m}=0
$$

Note: $\mathcal{K}_{A}, \mathcal{K}_{G}$ tiny wrto $\mathbb{K}(\mathcal{A}, b)$

Projected Sylvester equation:

$$
\begin{aligned}
V_{m}^{\top}\left(A V_{m} Y_{m} W_{m}^{\top}+V_{m} Y_{m} W_{m}^{\top} G^{\top}\right. & \left.-B_{1} B_{2}^{\top}\right) W_{m}=0 \\
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(V_{m}^{\top} G^{\top} V_{m}\right) & -V_{m}^{\top} B_{1} B_{2}^{\top} W_{m}=0
\end{aligned}
$$

Early contributions: Saad '90, Jaimoukha \& Kasenally '94, for $\operatorname{range}\left(V_{m}\right)=\mathcal{K}_{A}=\operatorname{Range}\left(\left[B_{1}, A B_{1}, \ldots, A^{m-1} B_{1}\right]\right)$

More recent options as approximation space

Enrich space to decrease space dimension

- Extended Krylov subspace
(Druskin \& Knizhnerman '98, Simoncini '07)
- Rational Krylov subspace

usually, $\left\{s_{1}, \ldots, s_{m-1}\right\} \subset \mathbb{C}^{+}$chosen either a-priori or dynamically (form matrix equations, Druskin \& Simoncini '11)

More recent options as approximation space

Enrich space to decrease space dimension

- Extended Krylov subspace
(Druskin \& Knizhnerman '98, Simoncini '07)
- Rational Krylov subspace

$$
\mathcal{K}_{A}=\mathbb{K}_{A}:=\operatorname{Range}\left(\left[B_{1},\left(A-s_{1} I\right)^{-1} B_{1}, \ldots, \prod_{j=1}^{m-1}\left(A-s_{j} /\right)^{-1} B_{1}\right]\right)
$$

usually, $\left\{s_{1}, \ldots, s_{m-1}\right\} \subset \mathbb{C}^{+}$chosen either a-priori or dynamically (form matrix equations, Druskin \& Simoncini '11)

In both cases, for Range $\left(V_{m}\right)=\mathcal{K}_{A}$, Range $\left(W_{m}\right)=\mathcal{K}_{G^{\top}}$ projected Lyapunov equation: $\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(W_{m}^{\top} G^{\top} W_{m}\right)-V_{m}^{\top} B_{1} B_{2}^{\top} W_{m}=0 \quad X_{m}=V_{m} Y_{m} W_{m}^{\top}$

More recent options as approximation space

Enrich space to decrease space dimension

- Extended Krylov subspace
(Druskin \& Knizhnerman '98, Simoncini '07)
- Rational Krylov subspace

$$
\mathcal{K}_{A}=\mathbb{K}_{A}:=\operatorname{Range}\left(\left[B_{1},\left(A-s_{1} I\right)^{-1} B_{1}, \ldots, \prod_{j=1}^{m-1}\left(A-s_{j} I\right)^{-1} B_{1}\right]\right)
$$

usually, $\left\{s_{1}, \ldots, s_{m-1}\right\} \subset \mathbb{C}^{+}$chosen either a-priori or dynamically (form matrix equations, Druskin \& Simoncini '11)

In both cases, for Range $\left(V_{m}\right)=\mathcal{K}_{A}$, Range $\left(W_{m}\right)=\mathcal{K}_{G^{\top}}$ projected Lyapunov equation:

$$
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(W_{m}^{\top} G^{\top} W_{m}\right)-V_{m}^{\top} B_{1} B_{2}^{\top} W_{m}=0 \quad X_{m}=V_{m} Y_{m} W_{m}^{\top}
$$

A first example. Space-time discretization

$u_{t}=\mathcal{L}(u), \quad \mathcal{L}(u)=-\Delta u+10 x u_{x}+10 y u_{y}, \quad(x, y, z) \in(0,1)^{3} \quad u\left(*, t_{0}\right)=0, f=1$
Crank-Nicolson type discretization in time, Finite Differences in space
\Rightarrow One-sided approximation, only in space (no dim reduction in time)
CPU time

n_{A}	n_{G}	Crank-Nic	RKSM (dim)
15625	400	5.1	$1.1(20)$
125000	400	75.7	$18.5(25)$
287496	400	314.5	$63.8(28)$

$$
A X+X G^{T}=B_{1} B_{2}^{T}, \quad X \approx X_{1} X_{2}^{T}=V_{m} Y=V_{m} Y_{1} Y_{2}^{T}
$$

Pros and Cons of Rational Krylov spaces

Pros

- Captures minimal rank on the fly
- Generally very efficient on large sparse problems
- Parameter-free in practice
- Increasingly more expensive on denser problems (3D)
- Orthogonalization of long vectors

Pros and Cons of Rational Krylov spaces

Pros

- Captures minimal rank on the fly
- Generally very efficient on large sparse problems
- Parameter-free in practice
- Increasingly more expensive on denser problems (3D)
- Orthogonalization of long vectors

Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large variety of settings

Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large variety of settings

A $(1 \pm \varepsilon) \ell_{2}$-subspace embedding for the tall matrix $V \in \mathbb{R}^{n \times k}$ is a matrix S such that, for all $x \in \mathbb{R}^{k}$,

$$
(1-\varepsilon)\|V x\|_{2}^{2} \leq\|S V x\|_{2}^{2} \leq(1+\varepsilon)\|V x\|_{2}^{2}
$$

To build a "feasible" S

- S needs to have small number of rows, r
- The products SV should be cheap
- Probabilistic confidence on the quality of S

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)

Sketching strategies. Subspace embedding.

A formidable, probability-based, data reduction strategy, applicable to a large variety of settings

A $(1 \pm \varepsilon) \ell_{2}$-subspace embedding for the tall matrix $V \in \mathbb{R}^{n \times k}$ is a matrix S such that, for all $x \in \mathbb{R}^{k}$,

$$
(1-\varepsilon)\|V x\|_{2}^{2} \leq\|S V x\|_{2}^{2} \leq(1+\varepsilon)\|V x\|_{2}^{2}
$$

To build a "feasible" S :

- S needs to have small number of rows, r
- The products SV should be cheap
- Probabilistic confidence on the quality of S

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)

The Subsampled Randomized Hadamard Transform

\Rightarrow If S is an $r \times n$ matrix of i.i.d. $N(0,1 / r)$ with $r=\mathcal{O}\left(k / \varepsilon^{2}\right)$ then S is $(1 \pm \varepsilon)$ embedding
\Rightarrow If S taken from fast Johnson-Lindenstrauss transforms, then $S V$ only costs $\mathcal{O}(n k)$ (Tamás Sarlós)

A convenient choice giving a fast Johnson-Lindenstrauss transform:


```
(Randemacher operator)
with
D "rotation" (diagonal matrix from uniform distr. in ( \(-1,1\) )
```

C fast cosine transform
P coordinate sampling

The Subsampled Randomized Hadamard Transform

\Rightarrow If S is an $r \times n$ matrix of i.i.d. $N(0,1 / r)$ with $r=\mathcal{O}\left(k / \varepsilon^{2}\right)$ then S is $(1 \pm \varepsilon)$ embedding
\Rightarrow If S taken from fast Johnson-Lindenstrauss transforms, then $S V$ only costs $\mathcal{O}(n k)$ (Tamás Sarlós)

A convenient choice giving a fast Johnson-Lindenstrauss transform:

$$
S v:=\frac{1}{\sqrt{r n}} P C D v, \quad S \text { is an } r \times n \text { matrix }
$$

(Randemacher operator) with
D "rotation" (diagonal matrix from uniform distr. in $(-1,1)$)
C fast cosine transform
P coordinate sampling

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)

Sketching meets Krylov

How can we use subspace embedding in our context to get $X_{m}=V_{m} Y_{m} W_{m}^{\top}$?

- Compute a "cheap" space range $\left(V_{m}\right)$
- Avoid orth and storing V_{m}
- $V_{m} \quad \Rightarrow \quad S V_{m}$
- Orthogonalize shorter vectors in $S V_{m}$
(similarly for W_{m})

Technical details:
\& Local orthogonality in V_{m}, W_{m} ("truncated basis")
\% Two-pass strategy to recover $X_{m}=\left(V_{m} Y_{m}\right) W_{m}^{T}$

Currently NLA 'hot topic'. In the "Krylov world", Balabanov, Cortinovis, Grigori, Guettel, Kressner,
Nakatsukasa, Nouy, Schweitzer, Timsit, Tropp, etc.

Sketching meets Krylov

How can we use subspace embedding in our context to get $X_{m}=V_{m} Y_{m} W_{m}^{T}$?

- Compute a "cheap" space range $\left(V_{m}\right)$
- Avoid orth and storing V_{m}
- $V_{m} \quad \Rightarrow \quad S V_{m}$
- Orthogonalize shorter vectors in $S V_{m}$
(similarly for W_{m})

Technical details:
\& Local orthogonality in V_{m}, W_{m} ("truncated basis")
\& Two-pass strategy to recover $X_{m}=\left(V_{m} Y_{m}\right) W_{m}^{T}$

Currently NLA 'hot topic'. In the "Krylov world", Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa, Nouy, Schweitzer, Timsit, Tropp, etc.

The sketched problem

Instead of imposing Galerkin condition $V_{m}^{T} R_{m} W_{m}=0$ and solve

$$
\left(V_{m}^{\top} A V_{m}\right) Y_{m}+Y_{m}\left(W_{m}^{\top} G^{\top} W_{m}\right)=V_{m}^{\top} B_{1} B_{2}^{\top} W_{m} \quad X_{m}=V_{m} Y_{m} W_{m}^{\top}
$$

We impose the "sketched" Galerkin condition $Q_{m}^{T} S_{V} R_{m} S_{W} P_{m}=0$ and solve

$$
\left(Q_{m}^{\top} S A V_{m}\right) Y_{m} T_{W}^{T}+T_{V} Y_{m}\left(W_{m}^{\top} G^{\top} P_{m}\right)=Q_{m}^{\top} S_{V} B_{1} B_{2}^{\top} S_{W}^{\top} P_{m}
$$

where $S_{V} V_{m}=Q_{m} T_{V}, S_{W} W_{m}=P_{m} T_{W}$ are QR factorizations

Work in progress with Davide Palitta, Marcel Schweitzer

The same problem seen earlier

$$
\begin{aligned}
& u_{t}-\mathcal{L}(u)=f, \quad \mathcal{L}(u)=-\Delta u+10 x u_{x}+10 y u_{y}, \quad(x, y, z) \in(0,1)^{3} \\
& u\left(*, t_{0}\right)=0, f=1
\end{aligned}
$$

Crank-Nicolson type discretization in time, Finite differences in space
\Rightarrow One-sided approximation, only in space (no dim reduction in time)

Truncation: 5, \quad Sketched space dim: $1000\left(=2 m_{\max }\right)$
CPU time

n_{A}	n_{G}	Crank-Nic	RKSM (dim)	Sketched Krylov (dim)
15625	400	5.08	$1.15(20)$	$1.04(180)$
125000	400	75.71	$18.50(25)$	$10.72(260)$
287496	400	314.54	$63.82(28)$	$39.53(360)$

$$
A X+X G^{T}=B_{1} B_{2}^{T}, \quad X \approx X_{1} X_{2}^{T}
$$

All-at-once heat equation

$$
u_{t}+\Delta u=f \quad u(0)=0
$$

Variational formulation
find $u \in U: \quad b(u, v)=\langle f, v\rangle \quad$ for all $v \in V$
where

$$
\begin{aligned}
& U:=H_{(0)}^{1}\left(\mathcal{I} ; X^{\prime}\right) \cap L_{2}(\mathcal{I}, X), X:=H_{0}^{1}(\Omega), V:=L_{2}(\mathcal{I} ; X) \\
& b(u, v):=\int_{0}^{\tau} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{\tau} a(u(t), v(t)) d t \\
& \langle f, v\rangle:=\int_{0}^{\tau} \int_{\Omega} f(t, x) v(t, x) d x d t .
\end{aligned}
$$

Discretization
Petrov-Galerkin method with trial and test spaces $U_{\delta} \subset U, V_{\delta} \subset V$

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta}
$$

All-at-once heat equation

$$
u_{t}+\Delta u=f \quad u(0)=0
$$

Variational formulation

$$
\text { find } u \in U: \quad b(u, v)=\langle f, v\rangle \quad \text { for all } v \in V
$$

where

$$
\begin{aligned}
& U:=H_{(0)}^{1}\left(\mathcal{I} ; X^{\prime}\right) \cap L_{2}(\mathcal{I}, X), X:=H_{0}^{1}(\Omega), V:=L_{2}(\mathcal{I} ; X) \\
& b(u, v):=\int_{0}^{\tau} \int_{\Omega} u_{t}(t, x) v(t, x) d x d t+\int_{0}^{\tau} a(u(t), v(t)) d t \\
& \langle f, v\rangle:=\int_{0}^{\tau} \int_{\Omega} f(t, x) v(t, x) d x d t .
\end{aligned}
$$

Discretization: Petrov-Galerkin method with trial and test spaces $U_{\delta} \subset U, V_{\delta} \subset V$

$$
\text { find } u_{\delta} \in U_{\delta}: \quad b\left(u_{\delta}, v_{\delta}\right)=\left\langle f, v_{\delta}\right\rangle \quad \text { for all } v_{\delta} \in V_{\delta}
$$

with $U_{\delta}:=S_{\Delta t} \otimes X_{h}, V_{\delta}=Q_{\Delta t} \otimes X_{h}$ where
$S_{\Delta t}$: piecewise linear FE on \mathcal{I}
$Q_{\Delta t}$: piecewise constant FE on \mathcal{I}
X_{h} : any conformal space, e.g., p.w. linear FE
\& Well-posedness (discrete inf-sup cond) depends on the choice of U_{δ}, V_{δ}
Remark: This discretization coincides with Crank-Nicolson scheme if trapezoidal approximation of the rhs temporal integration is used

The final linear system

$$
B_{\delta}^{\top} u_{\delta}=f_{\delta}
$$

where

$$
\begin{aligned}
{\left[B_{\delta}\right]_{(k, i),(\ell, j)} } & =\left(\dot{\sigma}^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})}\left(\phi_{i}, \phi_{j}\right)_{L_{2}(\Omega)}+\left(\sigma^{k}, \tau^{\ell}\right)_{L_{2}(\mathcal{I})} a\left(\phi_{i}, \phi_{j}\right), \\
{\left[f_{\delta}\right]_{(\ell, j)} } & =\left(f, \tau^{\ell} \otimes \phi_{j}\right)_{L_{2}(\mathcal{I} ; H)}
\end{aligned}
$$

that is, $B_{\delta}=D_{\Delta t} \otimes M_{h}+C_{\Delta t} \otimes K_{h}$
Remark: We approximate f_{δ} to achieve full tensor-product structure
Resulting generalized Sylvester equation:

$$
K_{h} \mathbf{U}_{\delta} C_{\Delta t}+M_{h} \mathbf{U}_{\delta} D_{\Delta t}=F_{\delta}, \quad \text { with } \quad F_{\delta}=\left[g_{1}, \ldots, g_{P}\right]\left[h_{1}, \ldots, h_{P}\right]^{\top}
$$

$$
F_{\delta} \text { matrix of low rank } \Rightarrow \mathbf{U}_{\delta} \text { approx by low rank matrix } \tilde{\mathbf{U}}_{\delta}
$$

(Julian Henning, Davide Palitta, V. S., Karsten Urban, 2021)

Sketching strategies. Preliminary runs. 1

$$
M_{h}^{-1} K_{h} \mathbf{U}_{\delta}+\mathbf{U}_{\delta} D_{\Delta t} C_{\Delta t}^{-1}=M_{h}^{-1} F_{\delta} C_{\Delta t}^{-1}
$$

($M_{h}^{-1} K_{h}$ not formed explicitly) corresponds to

$$
A X+X G^{T}=B_{1} B_{2}^{T}, \quad X \approx X_{1} X_{2}^{T}
$$

We solve by only reducing the space variable (One-sided algebraic approx)
Truncation: 5, \quad Sketched space dim: $1000\left(=2 m_{\max }\right)$
CPU time (secs)

n_{A}	n_{G}	Crank-Nic	RKSM (dim)	Sketched Krylov (dim)
9472	1000	8.4	$4.3(17)$	$3.1(180)$
13085	1000	10.8	$6.40(17)$	$4.7(200)$
19126	1000	14.5	$11.7(18)$	$6.3(220)$
29430	1000	20.8	$19.4(17)$	$10.1(240)$
46545	1000	35.1	$52.9(20)$	$21.5(320)$
82270	1000	53.3	$149.9(21)$	$42.2(360)$
163195	1000	165.6	$356.2(20)$	$104.5(460)$
393968	1000	504.9	$1634.2(21)$	$388.5(620)$

(approximate solution rank: 17-20)

Sketching strategies. Preliminary runs. 2

Truncation: 5, \quad Sketched space dim: $1000\left(=2 m_{\max }\right)$
CPU time (secs), mass matrix lumping in space

n_{A}	n_{G}	Crank-Nic	RKSM (dim)	Sketched Krylov (dim)
9472	1000	8.3	$1.5(15)$	$0.9(120)$
13085	1000	14.1	$1.7(15)$	$1.6(120)$
19126	1000	18.9	$2.2(16)$	$1.6(140)$
29430	1000	29.1	$2.7(16)$	$2.1(160)$
46545	1000	43.9	$4.1(16)$	$3.4(180)$
82270	1000	83.2	$8.5(19)$	$7.1(220)$
163195	1000	225.2	$18.9(19)$	$17.8(260)$
393968	1000	807.8	$53.8(16)$	$60.2(360)$

(approximate solution rank: 17-20)

Conclusions

Sketching:

- Very promising strategy for big data
- Easily applicable in matrix computations contexts
- Analysis of theoretical impacts is ongoing in various communities
\rightarrow In our context: pushes dimension limits ahead

Visit: WWW.dm.unibo.it/ simoncin
Email address: valeria.simoncini@uribo.it

Conclusions

Sketching:

- Very promising strategy for big data
- Easily applicable in matrix computations contexts
- Analysis of theoretical impacts is ongoing in various communities
- In our context: pushes dimension limits ahead

Visit: wWW.dm.unibo.it/~simoncin
Email address: valeria.simoncini@uribo.it

Conclusions

Sketching:

- Very promising strategy for big data
- Easily applicable in matrix computations contexts
- Analysis of theoretical impacts is ongoing in various communities
- In our context: pushes dimension limits ahead

Visit: www.dm.unibo.it/~simoncin
Email address: valeria.simoncini@unibo.it

