Stefano Riolo

tenure-track researcher in Bologna, working in geometric topology

email: stefano,.,riolo,

institutional web page here


• April 17-19 '24: workshop Manifolds and groups in Bologna, II


A small cusped hyperbolic 4-manifold
Bull. Lond. Math. Soc. 56:1 (2024) 176-187 journal arXiv

The signature of cusped hyperbolic 4-manifolds
with Sasha Kolpakov and Steve Tschantz
Int. Math. Res. Not. IMRN 2023:9 (2023) 7961-7975 journal arXiv

Character varieties of a transitioning Coxeter 4-orbifold
with Andrea Seppi
Groups Geom. Dyn. 16:3 (2022) 779-842 journal arXiv

A small closed convex projective 4-manifold via Dehn filling
with Gye-Seon Lee and Ludovic Marquis
Publ. Mat. 66:1 (2022) 369-403 journal arXiv

Geometric transition from hyperbolic to anti-de Sitter structures in dimension four
with Andrea Seppi
Ann. Sc. Norm. Super. Pisa Cl. Sci. XXIII:1 (2022) 115-176 journal arXiv

Embedding non-arithmetic hyperbolic manifolds
with Sasha Kolpakov and Leone Slavich
Math. Res. Lett. 29:1 (2022) 247-274 journal arXiv

Convex plumbings in closed hyperbolic 4-manifolds
with Bruno Martelli and Leone Slavich
Geom. Dedicata 212:1 (2021) 243-259 journal arXiv

Compact hyperbolic manifolds without spin structures
with Bruno Martelli and Leone Slavich
Geom. Topol. 24:5 (2020) 2647-2674 journal arXiv

Many cusped hyperbolic 3-manifolds do not bound geometrically
with Sasha Kolpakov and Alan Reid
Proc. Amer. Math. Soc. 148:5 (2020) 2223-2243 journal arXiv

Counting cusped hyperbolic 3-manifolds that bound geometrically
with Sasha Kolpakov
Trans. Amer. Math. Soc. 373:1 (2020) 229-247 journal arXiv

New hyperbolic 4-manifolds of low volume
with Leone Slavich
Algebr. Geom. Topol. 19:5 (2019) 2653-2676 journal arXiv

Hyperbolic Dehn filling in dimension four
with Bruno Martelli
Geom. Topol. 22:3 (2018) 1647-1716 journal arXiv

Spines of minimal length
with Bruno Martelli, Matteo Novaga, and Alessandra Pluda
Ann. Sc. Norm. Super. Pisa Cl. Sci. XVII:3 (2017) 1067-1090 journal arXiv


Cone-manifolds and hyperbolic surgeries
advisor Bruno Martelli, University of Pisa (2017) link

papers in preparation or work in progress (tentative titles)

Dehn filling all the cusps of a hyperbolic 4-manifold
with Gye-Seon Lee, Ludovic Marquis, and Tomoshige Yukita

Filling and drilling complex hyperbolic surfaces
with Pietro Sabatino

the animations (taken from here) represent the six regular 4-polytopes, which are four-dimensional analogues of the more familiar Platonic solids

last update: February '24