2024
26 marzo
ore 14:00
nell'ambito della serie: TOPICS IN MATHEMATICS 2023/2024
An elementary argument (for sure well-known to the operator theory community) allows to compare the orthogonal projection of a Hilbert space H onto a given closed subspace of H, with (any) bounded non-orthogonal projection acting among the same spaces: this yields an operator identity that is valid in the Hilbert space H. This paradigm has deep implications in analysis, at least in two settings: -in the specific context where the Hilbert space consists of the square-integrable functions along the boundary of a rectifiable domain D in Euclidean space, taken with with respect to, say, induced Lebesgue measure ds (the Lebesgue space L^2(bD)), and the closed subspace is the holomorphic Hardy space H^2(D). In this context the orthogonal projection is the Szego projection, and the non-orthogonal projection is the Cauchy transform (for planar D), or a so-called Cauchy-Fantappie’ transform (for D in C^n with n¥geq 2). -in the specific context where the Hilbert space is the space of square-integrable functions on a domain D in Euclidean space taken with respect to Lebesgue measure dV, and the closed subspace is the Bergman space of functions holomorphic in D that are square-integrable on D. Here the orthogonal projection is the Bergman projection, and the non-orthogonal projection is some ``solid’’ analog of the Cauchy (or Cauchy-Fantappie’) transform. A prototypical problem in both of these settings is the so-called ``L^p-regularity problem’’ for the orthogonal projection where p¥neq 2. This is because the Szego and Bergman projections, which are trivially bounded in L^2 (by orthogonality), are also meaningful in L^p, p¥neq 2 but proving their regularity in L^p is in general a very difficult problem which is of great interest in the theory of singular integral operators (harmonic analysis). Three threads emerge from all this: (1) a link between the (geometric and/or analytic) regularity of the ambient domain and the regularity properties of these projection operators. (2) applications to the numerical solution of a number of boundary value problems on a planar domain D that model phenomena in fluid dynamics. For a few of these problems there can be no representation formula for the solution: numerical methods are all there is. (3) the effect of dimension: for planar D the projection operators are essentially two and can be studied either directly or indirectly via conformal mapping (allowing for a great variety of treatable domains); as is well known, in higher dimensional Euclidean space there is no Riemann mapping theorem: conformal mapping is no longer a useful tool. On the other hand the basic identity in L^2 (see above) is still meaningful but geometric obstructions arise (the notion of pseudoconvexity) that must be reckoned with.
Torna alla pagina dei seminari del Dipartimento di Matematica di Bologna