Prossimi Seminari

Venerdì 22 Set ore 13:00
presso Seminario I
seminario di analisi matematica
nel ciclo di seminari
Complex Analysis Lab
Wolff's proof of Wolff's inequality (in the dyadic setting)
Nicola Arcozzi
In 1983 Tom Wolff proved a surprising inequality which proved to be a pivotal tool in Nonlinear Potential Theory. I will go through Wolff's proof, but in the dyadic setting. Hedberg, L. I.; Wolff, Th. H. Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187.
Martedì 03 Ott ore 10:00
presso Seminario II
seminario di analisi matematica
Singular differential operators with meromorphic eigenfunctions - part I
P.G. Grinevich
These two talks are based on joint works with S.P. Novikov and R.G. Novikov. Generically the spectral theory of differential operators with singular coefficients is badly defined. But following some ideas of soliton theory we consider a very special subclass of differential operators with meromoprphic coefficients such that: 1. In dimension 1 we assume that all eigenfunctions at all energy levels are meromorphic. 2. In dimension 2 we assume that at one energy level we have sufficiently many locally meromorphic solutions. We show that the spectral theory for such operators can be naturalyy defined, but the Hibert spaces of fucntions should be replaces by pseudo-Hilbert spaces of Potrjagin type. At the first talk we will focus on the 1-dimensinal case. In particular we show, that for such periodic operators the Bloch variety is well-defined. The second part will be dedicated to the 2-dimensional case.
Venerdì 06 Ott ore 15:00
presso Seminario II
seminario di analisi matematica
Singular differential operators with meromorphic eigenfunctions - part II
P.G. Grinevich
These two talks are based on joint works with S.P. Novikov and R.G. Novikov. Generically the spectral theory of differential operators with singular coefficients is badly defined. But following some ideas of soliton theory we consider a very special subclass of differential operators with meromoprphic coefficients such that: 1. In dimension 1 we assume that all eigenfunctions at all energy levels are meromorphic. 2. In dimension 2 we assume that at one energy level we have sufficiently many locally meromorphic solutions. We show that the spectral theory for such operators can be naturalyy defined, but the Hibert spaces of fucntions should be replaces by pseudo-Hilbert spaces of Potrjagin type. At the first talk we will focus on the 1-dimensinal case. In particular we show, that for such periodic operators the Bloch variety is well-defined. The second part will be dedicated to the 2-dimensional case.
Mercoledì 22 Nov ore 14:30
presso Aula Cremona
seminario di probabilità
nel ciclo di seminari
Seminari di Probabilità
Probabilisti e statistici italiani del secolo scorso
Eugenio Regazzini
Il XX è stato, fra altre cose, anche il secolo della rinascita della probabilità e della statistica nelle comunità scientifiche più avanzate dell'occidente. Questo seminario si propone di illustrare il contributo degli italiani a tale processo, a partire dalle questioni che, polarizzando l'interesse di alcuni nostri studiosi di forte ingegno, portarono alla formulazione di teorie originali ed al conseguimento di pregevoli risultati destinati a durare nel tempo. Di essi si darà cenno, breve ma sperabilmente sufficiente a chiarirne valore e ruolo in relazione allo sviluppo generale delle scienze e dei metodi, insieme a qualche considerazione sulle caratteristiche umane e professionali degli Autori.